太赫兹波检测含水生物样品的特征吸收光谱

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:echoofstar
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹(THz)波的光子能量(0.4-41 meV)与大量有机物,生物大分子的旋转能级和振动能级处于同一数量级,可以较无损的获取这些样品的特征吸光谱,进行定性或定量检测。然而,活性生物样品内部含有大量水分,水对太赫兹波吸收强烈,掩盖了生物样品的特征吸收光谱。针对该问题,本论文设计,优化并搭建了“静态”与“瞬态”两套太赫兹时域光谱系统(THz-TDS),分别实现了超低浓度生物大分子溶液与活细胞的特征光谱检测。静态THz-TDS采用LT-GaAs光电导天线作为太赫兹辐射源,ZnTe晶体作为太赫兹探测器,辅以太赫兹平行平板金属波导与太赫兹金属表面等离子体波导,增强局域的太赫兹电场强度,实现太赫兹波透射检测含水样品。利用静态THz-TDS,检测了 α-乳糖、4-氨基苯甲酸、L-精氨酸、L-谷氨酸、和纤维二糖等生物大分子溶液,浓度分别为1.754×10-9 mol/L、1.46×10-10 mol/L、2.0115×10-9 mol/L、4.898×10-9 mol/L、和 0.877×10-9 mol/L。所获特征吸收光谱均存在与其固体样品相似的特征吸收峰。瞬态THz-TDS使用LiNbO3晶体作为强太赫兹辐射源,ZnTe晶体与CCD结合作为太赫兹探测器。其中,通过波前倾斜技术,在LiNbO3晶体中实现了非共线相位匹配,获得了平均功率为500μW的强太赫兹辐射电场,实现了太赫兹波透射检测活细胞;使用CCD正交平衡探测技术,测量单个完整太赫兹脉冲的时间仅为155 ps。利用瞬态THz-TDS,检测了浓度分别为 5.78×103(per/mm2)、1.16×104(per/mm2)、和 1.74×104(per/mm2)的HeLa活细胞,其特征吸收峰的幅值与细胞浓度呈线性增加关系。
其他文献
随着工业技术的不断进步和发展,生活噪声与工业噪声对人们的影响逐渐加大。长期处于噪声的环境中会对人们的身体和精神健康产生巨大的负面影响。如何有效的降低噪声污染成为了人们迫切需要解决的难题。传统的被动降噪方法,对中低频噪声的消除作用不大,要想获得更好的降噪效果需要增加噪声吸收系统的体积。主动噪声控制方法作为一种新的降噪手段,针对中低频噪声有非常好的降噪效果,并且具有体积小,适用范围广等优点,引起了众多
976nm波段大功率半导体激光器提供的泵浦光能量与掺镱光纤激光器吸收峰匹配,在光纤激光器泵浦领域得到广泛应用,关于激光芯片的工程化研究成为近年激光器的研究热点之一。本文以976nm量子阱激光器为研究对象,从结构分析、仿真模拟、实验测试、等效电路建模四个方面开展研究,主要的工作内容和研究成果包括:第一,理论分析了有源区组分和厚度、波导层结构以及腔长、非注入窗口等参数对激光器特性的影响规律,为提升输出
有机光电倍增探测器因其高外量子效率(External Quantum Efficiency,EQE)成为人们的研究热点。陷阱掺杂是实现有机光电探测器电流倍增的一种重要方法,但其目前还存在着陷阱掺杂浓度低的问题。为解决上述问题,论文采用在三元体异质结P3HT:PTB7:PC61BM活性层体系中掺杂两种电子陷阱的双掺杂方法。论文首先研究了单掺杂C70陷阱的有机光电倍增探测器。实验表明:掺杂2.5wt%
超构材料是一种人工按照周期排列进行合成的电磁材料,与自然界中的材料相比,具有一系列不同寻常的电磁特性,在很多领域得到了广泛关注与应用。但传统的多频带天线设计方法会因寄生枝节的增加天线尺寸变大,对器件的小型化产生一定影响在某种程度上了限制了天线的应用。本文针对这个问题,以超构材料为基本主题,设计实现了两款小型化五频带天线。超宽带技术因具有系统容量大、传输速率快等优点有着广泛地应用,但在超宽带技术的工
太赫兹波通常被定义为频率在100 GHz-10 THz之间,具有特殊电磁特性的电磁波。太赫兹技术是一个非常重要的交叉前沿领域,广泛应用于成像系统,安检及雷达领域中。由于自然界中许多生物大分子的振动和旋转频率均处于太赫兹频段,因此太赫兹技术为生物信息检测提供了一种强有力的手段。由于太赫兹超材料吸收器可以有效地提升检测效果,因此超材料吸收器在制备高灵敏度生物化学传感器方面具有很大的潜力。其中全介质超材
激光在大气中传输时,因受到大气分子以及气溶胶粒子的吸收、散射等影响而发生衰减。不同的天气现象会对激光的传输产生不同的影响,特别是在雾环境下激光的传输会受到严重影响。本文围绕激光在大气中的传输衰减特性展开了研究,为分析激光的传输衰减系数,搭建了激光的传输衰减实验系统。分析比较通过实验数据计算得到的衰减系数与经典模型的衰减系数,并计算两者的均方根误差,对经典模型在西安地区的适用性进行了分析。具体研究内
皮秒光电导开关(Photoconductive Seiconductor Sitches,PCSS)兼具高功率和高重复率双重特性,较之脉冲功率技术中的常规开关具有皮秒级响应、兆瓦量级功率密度、寄生电感电容小、弱光触发等优势,在超快光电子学太赫兹技术和高功率脉冲领域具有极其广泛的应用前景,包括有太赫兹波辐射和探测、高功率微波源、粒子加速器和定向能系统等。PCSS暗态电阻率是影响开关耐压性能的一
无线通信技术的发展,使得正交频分复用(Orth ogonal Frequency Division Multiplexing,OFDM)技术得到了越来越广泛的应用。由于电磁环境的复杂性,所传输的OFDM信号带内极易串入其他通信信号。当传输信号和信道的特征不明确时,传统的干扰抑制方法往往无法有效地对OFDM信号带内的干扰分量进行分离或抑制,获取所需要的有用信号。本文以信号的稀疏表示理论为基础对OFD
创伤、炎症以及感染所引起的骨缺损在临床上非常见,骨缺损严重影响患者的日常生活。而骨植入材料可以有效达到治疗的目的。尤其骨植入材料具备克服自、异体骨的缺陷,修复大面积骨缺损,无致病性等优点。本研究基于静电纺丝及浸渍技术制备模拟骨微观成分的HA/胶原复合微纳米纤维薄膜,拟设计搭建成分与结构仿生的三维多孔贯通结构骨植入支架材料。通过表面形貌表征(SEM)、物相分析(XRD)、力学性能测试、生物学性能测试
快速软恢复二极管(Fast and soft r ecovreyd iod e,FSRD)通常与绝缘栅双极晶体管(IGBT)、集成门极换流晶闸管(IGCT)等主开关器件反并联使用,为负载电感提供续流回路。随着主开关器件性能的不断提高,对反并联二极管的性能要求也随之提高。改善FSRD性能的方法有两种,一是通过器件结构的改进,二是通过载流子寿命控制。目前,随着载流子寿命控制技术的不断发展,载流子寿命控