论文部分内容阅读
生物炭是一种具有多级结构的环境功能材料,可以作为环境友好型土壤添加剂,在改良土壤性质、减少温室气体排放、固定环境污染物、固碳等方面具有良好的应用潜力。然而,作为一种外源土壤添加剂,生物炭的环境效应及风险必须得到重视,但相关研究开展的比较少。另外,生物炭纳米颗粒是生物炭的重要组成部分,但相关研究仍比较匮乏。本文综述了生物炭纳米颗粒目前的研究现状,总结了生物炭从制备过程到应用过程中环境风险及其产生机制,发现了生物炭不同尺寸颗粒在形貌、粒径、元素组成、反应性和毒性上的差异需要深入研究,生物炭纳米颗粒的环境效应及其风险,特别是对植物生长和代谢的影响仍不清楚。针对以上存在的问题,本文开展了一系列研究:(1)采用水稻秸秆和木屑两种生物质作为原料,经过不同温度的限氧裂解得到了一系列生物炭,通过超声分散-静置的方式分离了不同悬浮性的颗粒,并进一步通过电荷调控的方法得到了生物炭纳米颗粒;(2)对上述不同粒径生物炭颗粒的形貌和元素组成进行了表征,并测试对比了它们的吸附性能、反应性和毒性;(3)以水稻、番茄和芦苇为模式植物,采用水培实验观察了生物炭纳米颗粒对三种植物幼苗生长的影响,并分析了可能的致毒原因;(4)以水稻为对象,采用代谢组学的研究方法,研究了生物炭纳米颗粒对分蘖期水稻生长和代谢的影响。本论文提出生物炭纳米颗粒的毒性可能也是生物炭环境风险的重要来源,为生物炭纳米颗粒的毒性效应评价和生物炭的环境风险评估提供基础资料。论文的主要创新性结果如下:(1)探明了不同粒径的生物炭颗粒从形貌和元素组成,到吸附性能、反应性和毒性等方面的特征。利用生物炭颗粒的不同悬浮性收集了生物炭沉积型颗粒,生物炭悬浮性颗粒与生物炭可溶性组分与超细颗粒。发现低温生物炭主要由脂肪碳为主的的沉积型组分和芳香碳为主的悬浮型组分组成,而高温生物炭由芳香碳为主的沉积型组分和脂肪碳为主的悬浮型组分组成;发现高温生物炭的反应性主要来源于其沉积型颗粒;高温生物炭可溶性组分与超细颗粒对发光细菌的半数光抑制最大浓度值(EC50)为707 mg/L,而低温生物炭该组分为80.7 mg/L,前者是后者的的7.7倍,后者毒性更强。(2)发现了芳构化生物炭吸附可离子化有机物的新型机制——多重π键配合下极化辅助的氢键作用(π-PAHB)。水分子能够以环状椅型水蔟的方式与芳构化表面结合并形成稳定的复合物,该复合物可作为质子受体,以氢键作用的方式提升7种可离子化有机物的吸附系数Kd,提升百分比为12.6%-26.9%;由于孔结构的重新打开和芳构化程度的提升,pH为1-13时,高温生物炭沉积型颗粒对苯酚的吸附量比原始生物炭提升29.0%-55.2%。(3)利用颗粒间电荷调控的方式优化了生物炭纳米颗粒的制备方法,明确了其在原始生物炭中的质量分数。通过pH调控生物炭超细颗粒间的电荷,使其发生分散——团聚——分散的行为,进一步通过离心分离得到了生物炭纳米颗粒,发现了生物炭纳米颗粒在原始生物炭上的质量分数为4.38%-6.61%,粒径范围为21.64-55.85 nm,并且随着生物炭制备温度的升高而增加;发现高木质素含量和高温生物炭的纳米颗粒表面存在大量酚类基团;(4)发现了生物炭纳米颗粒对芦苇生长表现出抑制效应,主要原因是生物炭纳米颗粒表面酚类基团的生物抑制效应和对根系表皮开孔的堵塞效应。木屑生物炭纳米颗粒和高温水稻秸秆生物炭纳米颗粒对芦苇生长表现出抑制效应,对芦苇生物量的降低比率为38.7%-42.4%,主要致毒原因是生物炭纳米颗粒表面酚类基团的生物抑制效应和对根系表皮开孔的堵塞效应。(5)发现了低温/高温生物炭纳米颗粒对水稻代谢的影响机制。发现低温生物炭纳米颗粒降低了水稻的分蘖能力,从低温生物炭纳米颗粒处理组中共筛选到58个代谢差异物,主要表现为水稻氨基糖核苷酸糖代谢的激活,嘧啶代谢和黄酮与黄酮醇合成的抑制;发现高温生物炭纳米颗粒降低了水稻枯叶/活叶的比例,从高温生物炭纳米颗粒处理组中共筛选到36个代谢差异物,主要涉及水稻烟酸烟酰胺代谢,色氨酸合成和苯丙氨酸代谢的激活。