钴基金属有机框架材料和碳气凝胶在超级电容器中的应用

来源 :青岛大学 | 被引量 : 0次 | 上传用户:awenqqw123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技的发展,人类对于能源的需求日益迫切,然而,石油、煤炭等不可再生资源的储量有限,因此发展新的可再生能源以及可储存和转换能源的储能装置的需求也越来越大。超级电容器是近几年来研究热点比较高的储能装置,它具有许多传统电池不可比拟的优点,比如功率密度高、充电时间短、循环稳定性好和安全性高等。然而相对于电池而言,超级电容器的能量密度较低,探索提高超级电容器能量密度至关重要。根据能量密度计算公式,提高电极材料比电容和扩宽器件工作电压窗口可以有效提高超级电容器的能量密度。在本论文中,我们采用气相沉积方法制备了具有高比电容的新型核壳结构Co-MOF@Co Ni O2复合材料,并将其作为电极应用于超级电容器;此外我们结合碳化和KOH活化的方法制备了石墨烯基氮自掺杂碳气凝胶,将其应用于具有宽电压窗口的锌离子混合超级电容器。具体工作如下:(1)以镍钴层状双金属氢氧化物(NiCo-LDH)为前驱体,用气相沉积方法在其表面原位生长Co-MOF,得到一种新颖的具有垂直排列纳米片阵列的Co-MOF@Co Ni O2核-壳复合材料。由于Co-MOF壳层与Co Ni O2核层的密切接触和协同作用,合成的Co-MOF@Co Ni O2电极比电容约为571.0 F g-1,明显高于原始的NiCo-LDH电极(380.0 F g-1)。经过循环伏安氧化后,该复合材料的电容性能进一步提高到757.2 F g-1。在功率密度为750.0 W kg-1时,利用正极材料Co-MOF@Co Ni O2/CC和负极材料AC组装的非对称性超级电容器的能量密度为27.4 Wh kg-1。Co-MOF@Co Ni O2复合材料的易于制备和良好的电化学性能使其成为一种潜在的超级电容器应用材料。(2)我们结合冷冻干燥、高温碳化和KOH活化,制备了一种结构新颖的氮自掺杂碳气凝胶,并用于锌离子混合超级电容器。具体地,氮自掺杂碳气凝胶作为正极,锌金属箔和2 M硫酸锌水溶液分别作为负极和电解液,组装了锌离子混合超级电容器。正极材料的制备经过了壳聚糖气凝胶冷冻干燥,碳化,氢氧化钾活化这三个步骤。随着活化温度的升高,活化后的碳气凝胶中的石墨烯组分不断增加。通过详细对比活化温度对碳气凝胶结构和性能的影响,发现在800℃活化的样品表现出了最好的电化学性能。组装的锌离子混合电容器在0.1 A g-1的电流密度下比电容约为299.5 F g-1,能量密度为106.5 Wh kg-1。此外,它也表现出了出色的循环稳定性,在2 A g-1下循环超过8000次仍然可以保留86.3%的电容量。重要的是,两个串联的锌离子电容器可以为一个2.5 V的LED小灯泡供电超过150小时,这是一个突破。以壳聚糖为前驱体的氮自掺杂多孔碳气凝胶,为制备高性能锌离子混合超级电容器正极材料开辟了一条新途径。
其他文献
为检测复杂的海洋环境,通常将多种低功耗传感器放置在海洋中。海洋传感器大多采用较为传统的化学电池供电,传统化学电池存在供电持久性差、环境清洁性差、体积大等缺点。海洋环境不同于陆地环境,传感器并不便于回收。所以,一种可用于海洋低功耗传感器供电的新型供电装置成为近些年国内外学者研究的重点。海洋同空气一样,蕴含着巨大的振动能量。其中,海洋中的卡门涡街效应作为一种规律已知的振动方式,便能使压电材料发生振动而
直接液体燃料电池(DLFC)具有能量转化效率高,燃料易于储存并且运输安全可靠等优点受到人们的普遍关注。然而,DLFC阳极催化剂一般为储量少的Pt,由于其价格过高,从而导致电池的成本过高,大大限制了DLFC的商业化发展。因此找到相对便宜的阳极催化剂显得尤为重要。Pd因为具有和Pt相似的晶体结构,并且Pd相对便宜,近年来成为人们研究的重要对象。为了实现DLFC商业化应用,提高Pd的催化效率和减少Pd的
非编码RNA(non-coding RNA,nc RNA)在转录调控中起着多方面的作用,并且是免疫功能的重要调节因子。目前关于鱼类非编码RNA在免疫调控中的研究较少。外周血单核细胞参与鱼的免疫反应,并有助于抵御病原菌感染。壳寡糖可以改善细胞和体液免疫力,从而增强鱼类的抗病能力。本论文研究以半滑舌鳎为实验对象,开展了外周血白膜层细胞的全转录组测序,通过生物信息学分析,鉴定了差异表达的lncRNA/m
碳材料具有微结构可调、缺陷可设计等优势,而杂原子掺杂工程对于调控碳材料的电导率、结构缺陷和储能性能意义重大。基于此,本文设计了硼、氮掺杂的分级多孔碳(HPC),系统研究其在钠离子、钾离子电池中的应用。本文分为以下两部分:(1)以纤维素为碳源,以氨水和硼酸作为氮和硼的掺杂源,采用喷雾干燥-高温碳化-化学刻蚀的步骤,设计合成了富氮(N@HPC)和硼氮共掺杂(B@N@HPC)的分级多孔碳。系统研究了硼掺
当前,世界上的发达国家和一些发展中国家都已进入老龄化社会,中国也未能避开老龄化这一趋势,也在不断地快速加深老龄化的程度。在这些国家中,中国的老龄化产品发展较为缓慢,不少老龄化产品仍存在粗制滥造甚至短缺、空白的现状。面对老年人这个特殊的用户群体,也决定了其对于产品设计的特殊需求,因此如何使老龄化产品能真正满足老年人的实际需求便成为了当下急需解决的课题。涉及老年人衣、食、住、行、用的产品都将深刻影响着
燃料电池领域对于环境保护,可持续能源的发展具有重要意义。以肼作为燃料电池原料具有很多优点,比如易于运输和储存、理论电动势高等,直接肼燃料电池中肼的电氧化是必不可少的,但目前广泛应用的大多为贵金属催化剂,高昂的价格和有限的储存量严重阻碍了其大规模应用,因此开发活性高且价格低廉的催化剂成为研究热点。受过渡金属硫化物在肼氧化反应中的优异性能启发,首先通过密度泛函理论计算比较了Fe S2和Fe3S4的催化
混合超级电容器结合了电池和双电层电容器的双重优势,具有较高的功率密度和能量密度以及良好的电化学稳定性等特点,近年来受到越来越多地研究。然而,由于电池型材料迟缓的离子扩散和较低的结构稳定性限制了其电化学性能,因此提高电池型电极材料的性能是发展高性能混合超级电容器的重要手段。基于此,本文通过对电极材料结构以及复合方法进行调控达到优化电极材料/电解液界面的反应活性的目的,从而提高混合超级电容器的性能。具
随着社会的快速发展,能源需求量不断增加,太阳能作为储存量丰富的清洁能源引起人们的广泛关注。太阳能电池是把太阳能转化为电能最直接的方式,其中,有机太阳能电池(OSCs)以原材料丰富、环境友好、制备工艺简单且在制备大面积、柔性、半透明器件中具有独特的优势而被广泛研究。新材料的合成以及制备工艺的成熟带动着有机光伏器件性能实现飞跃,特别是近年来非富勒烯受体材料由于其较强的吸收、易于调控的能级和形貌等优势得
第Ⅳ A族和第Ⅴ A族金属或其合金可以作为锂离子电池和钠离子电池的负极材料,例如Sn,Bi基的合金,具有较高的理论容量,被认为是理想的锂、钠离子电池负极材料。但是这些合金材料在反应过程中体积变化大(约300%),易引起电极材料粉碎脱落,导致电化学性能较差,从而限制了合金材料在锂、钠离子电池中的应用。因此,我们设计合成了系列新型锡、铋基合金材料,以抑制其体积膨胀,改善其电化学性能。采用液态钾钠合金为
燃料电池(Fuel Cell)是一种新型电化学电池,其发电方式高效无污染,被认为是能源未来的发展趋势。其中,固体氧化物燃料电池(SOFC)以其全固态结构和不使用贵金属作催化剂的优势受到世界各国的重视。目前SOFC发展的最大阻碍是运行温度过高,这会导致启动缓慢、材料老化、界面扩散、性能退化等一系列问题,所以推动运行温度中低温化是电池发展的当务之急。质子导体氧化物电解质替代氧离子导电电解质,使工作温度