松香浸渍改性对茶秆竹性能的影响研究

来源 :北京林业大学 | 被引量 : 0次 | 上传用户:sakurabb1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本研究针对茶秆竹圆竹存在的浸渍改性的渗透和固着等问题,利用松香作为改性剂,采用真空高压浸渍填充的工艺,对经过碱预处理的茶秆竹圆竹进行改性的处理。并采用电子显微镜(SEM)、红外光谱(FTIR)、X射线衍射仪(XRD)、氮吸附(BET)等仪器分析技术对茶秆竹改性前后的结构、尺寸稳定性以及化学成分进行表征,研究松香及改性松香的分布状态、与竹材的结合方式及作用机理。主要研究如下:(1)茶秆竹圆竹的竹青、竹肉与竹黄的细胞类型影响竹材的渗透性与润胀性。竹青系统包含表皮、下皮以及皮层结构,而表皮层上,长形细胞、硅质细胞与栓质细胞均匀分布,呈纵向排列。由于植硅体与蜡质层的存在使得竹青的渗透性较差;竹肉处导管的纹孔呈长扁椭圆状以及短扁椭圆状,属于单纹孔结构;此外,薄壁细胞具有丰富的纹孔,呈圆形,壁薄腔大,该细胞类型的渗透性和润胀性相对较好。而纤维细胞上的纹孔十分稀少,壁厚腔小,因此该细胞的渗透性较差;竹黄外表面细胞呈月牙形,是多壁层结构,呈横向排列,渗透性也不佳。(2)经过碱处理后的茶秆竹接触角减小,渗透性有所提高。在80℃,6%碱处理下,茶秆竹的渗透性最大,接触角为84°(比未处理样品下降了50%);6%碱处理后的竹青蜡质层消失,竹肉处的纤维细胞出现许多纳米级的孔隙,薄壁细胞的细胞壁发生了皱缩现象,细胞角隅处出现了开裂;而竹黄细胞也在碱处理后发生一定的变形。经过碱处理后的纤维素构型依然为I型,而部分半纤维素的木聚糖和葡甘露糖发生了降解反应,而木质素的愈创木基含量也有所减少;随着碱浓度的增加,纤维发生一定的膨胀,随后非结晶区发生一定的降解,因而纤维素的相对结晶度呈先降低后增加的趋势。(3)松香浸渍改性与环氧树脂松香浸渍改性对茶秆竹圆竹的尺寸稳定性与疏水性都有提升作用,通过40 s的动态接触角的变化实验发现,环氧树脂改性松香对于茶秆竹的疏水改性效果更好,比未处理材的接触角降低了32.3%。并且环氧树脂改性松香浸渍后的茶秆竹圆竹的吸水率在吸水实验的第12天比30 wt%松香浸渍的吸水率更低,效果更好。松香与竹材成分间化学反应活性较差,通过红外光谱发现两者之间并没有形成共价键,以物理填充为主,因此对松香浸渍改性的效果和抗流失性不利。而通过环氧树脂化学改性松香,环氧环断裂打开,并与竹材的羟基发生了加成反应,从而与竹材形成共价键,促使松香在竹材内牢固固着,提高了圆竹的各项性能。
其他文献
为缓解日益严重的能源和环境问题,新能源电动汽车已成为当今汽车产业的一个重要发展方向。如何设计出高转矩密度、宽调速范围和低振动噪声的车用驱动内置式永磁同步电机(IPMS
本文从新麦草的草产量及其相关性状、新麦草的种子产量及其相关性状、新麦草的营养价值测定与评价这三个方面,对其的23个品系进行了分析研究,得出以下结论:(1)对草产量以及其
猪繁殖与呼吸综合征(Prorcine reproductive and respiratory syndrome,PRRS)是20世纪80年代后期出现的一种广泛传播的猪繁殖与呼吸系统疾病。猪繁殖与呼吸综合征病毒(PRRSV)是一
随着各国经济迅速发展,不可再生能源日益短缺。而太阳能是最广泛、清洁的可再生能源,但是太阳具有不稳定性和间歇性,这给太阳能的利用增加了难度。相变材料可以实现热能的存
随着社会经济的发展,能源的消耗逐年增加,环境污染日趋严重,因此为了节约能源,保护环境,太阳能的利用逐渐引起世界各国的关注。由于纳米流体具有良好的光谱吸收特性,导热性能以及传热性能,因此作为太阳能集热器的集热工质具有重要的实际意义。关于纳米流体辐射特性的研究,国内外学者主要集中在理论研究和实验研究两个方面。然而实际问题中,纳米流体的稳定性会随着时间的推移而逐渐减弱,最终会出现颗粒团聚分层现象。针对此
石墨烯是构成石墨结构的碳的单原子层,是世界上第一种制备出的单原子层二维材料。由于独特的二维结构,石墨烯具有超高的载流子迁移率,对外界环境表现出极高的灵敏性。石墨烯
猪圆环病毒2型(Porcine circovirus type 2,PCV2)是引起猪圆环病毒病(Porcine circovirus diseases,PCVDs)的病原,主要侵害感染猪的免疫细胞,导致严重的免疫抑制,使感染猪对
目的本项研究通过评估应用链霉蛋白酶治疗初次根除失败的幽门螺杆菌感染患者的治疗方案对H.pylori根除率以及对本病的影响。为临床改善幽门螺杆菌根除率提供新思路。方法选择
目的:研究急性ST段抬高型心肌梗死炎症反应与不同中医证候患者介入术后心肌灌注的关系,为心血管疾病的中医药治疗及预后提供理论依据。方法:本项目选取2019年01月至2020年01
众所周知,许多含氮化合物的药物分子不仅具有抗病毒和抗肿瘤的效果,而且会引起蛋白质的结构变化,因此含氮化合物与蛋白质的相互作用成为研究者感兴趣的课题之一。近些年,很多