论文部分内容阅读
随着人类对鲤鱼的需求增加,高密度集约化养殖成为了主要养殖方式,但这种养殖方式一旦发病就会出现大规模的感染或死亡,严重影响了鲤鱼产业的健康、稳定和可持续发展。而药物方法除治疗效果甚微外对生态环境也造成污染,因而对鲤感染CyHV-3的转录组研究的抗病育种成为从根本上解决问题有效手段。伴随着分子育种技术的不断完善,使得鱼类新品种不断问世,而对了其种质资源的保护工作就显得捉襟见肘跟不上速度。在微卫星以及SNP等分子标记手段在鱼类群体遗传学方面的应用早已成熟的前提下,对鱼类保种群体方面的研究甚少。因此加大保种群体遗传结构的研究来确保育种基础的稳定后,再进一步进行抗病育种从而从根本上解决疾病对水产养殖业的危害。应用35对多态性较高的微卫星标记对鲤鱼新品种松浦红镜鲤的保种群体进行了遗传结构研究。结果显示:在91尾松浦红镜鲤个体中,共检测到140个等位基因,每个位点等位基因数3~6个,平均等有效位基因数为3.0426;期望杂合度范围为0.3750~0.8274,均值为0.6493;多态信息含量范围为0.396~0.912,均值为0.5869;哈迪-温伯格平衡检验结果群体处于不平衡状态;平均固定系数为-0.026,说明该群体存在杂合子过剩现象;瓶颈效应分析表明,群体已经历了瓶颈效应;根据连锁不平衡方法计算有效群体大小为31.2。该研究表明松浦红镜鲤遗传多样性较为丰富,为了在下一步保种工作中避免或降低瓶颈效应应加强保护工作,从而保持其丰富多样性和优良的经济性状。利用20个微卫星标记对国内仅存的两个散鳞镜鲤(Cyprinus carpio)保种群体(SP、CJ)进行遗传多样性分析。结果表明:20个微卫星标记共检测到147个等位基因,平均值为7.35,有效等位基因数(Ae)、期望杂合度(He)以及多态信息含量(PIC)的平均值分别为2.7828、0.6041和0.5386。SP群体的Ae、He以及PIC值分别为3.1126、0.6479和0.5948,其值均大于CJ群体(2.4529、0.5602和0.4823)。在两个群体中,群体特有等位基因共53个,其中9个为低频等位基因。对20个引物在两个群体中等位基因进行显著性分析,结果表明其中有16个引物可以作为区分两个群体的特异性分子标记。瓶颈效应分析结果显示2个群体均经历了瓶颈效应。同胞率检测结果(SP,97.5%;CJ,96.7%)偏高说明群体内近交压力较大。哈迪温伯格平衡检测表明:两个群体大部分位点偏离平衡并处于杂合子过剩状态。两个群体间的遗传距离(D)为0.5625,个体聚类结果显示,SP群体和CJ群体的个体均各聚为一支。群体间的遗传分化指数(Fst)为0.1138,Nm值为1.9462。该研究表明散鳞镜鲤群体遗传多样性水平较高,其中SP群体的遗传多样性水平高于CJ群体,且两群体处于中度遗传分化。感病组和未感病组转录组进行深度测序,得到显著差异表达基因:以未发病鱼为对照,发病轻度与未发病鱼显著差异表达基因4488个,其中上调基因1162个,下调基因3326个;发病中等程度与未发病鱼显著差异表达基因5411,其中上调基因965个,下调基因4446个;发病严重鱼与未发病鱼显著差异表达基因4954个,其中上调基因1375个,下调基因3579个。在三个比较中,发病中等程度与未发病鱼显著差异表达的基因最多,但上调基因数最少。而差异表达基因主要富集到15个显著差异信号通路,分别为Amoebiasis、Jak-STAT signalingpathway、B cell receptor signaling pathway、Chemokine signaling pathway、Fcgamma R-mediated phagocytosis、 Natural killer cell mediated cytotoxicity、Toxoplasmosis、Lysosome、Shigellosis、Pathways in cancer、Adherens junction、Chronic myeloid leukemia、Measles Protein processing in endoplasmic reticulum、Antigen processing and presentation。用荧光定量PCR验证其中6个极显著的信号通路,结果均出现显著差异性。同时从转录水平上进行抗病相关SNP挖掘,筛选到与抗病相关SNP标记3214个。