基于非均匀阵列探头的快速超声成像方法研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:lollipop1910
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
出于临床医学上一些重要疾病指征的精确测量需求,医学超声快速成像技术得益于其高效的成像速度,相关研究得到了有效推进,在该过程中也进一步提高了对超声快速成像质量的要求,主要集中在近场的图像分辨率及成像算法带来的伪影优化等方面,其根本原因在于超声阵列式换能器的结构带来的实际声场与理论声场的误差。为了从根源上对超声快速成像质量有所改善,本论文从超声探头设计与成像应用角度入手,主要开展了以下工作:一、提出了一种超声非均匀阵列结构分布模型,以天线雷达领域内成熟的量化优化方法为基础,并结合超声声场计算的特性进行了完善,优化了阵元在超声换能器表面的分布。在对原均匀线阵/均匀凸阵模型中阵元的物理位置做出修改后,非均匀线阵/凸阵的声场指向性结果表明其旁瓣值得到了明显优化,并成功突破了旁瓣最大理论值水平-13.5 dB。二、针对提出的非均匀线阵结构模型,在已有的声场优化结果基础上,进一步将非均匀线阵应用到多角度平面波复合成像技术上。通过详细的空间域声场分布仿真实验,验证了非均匀线阵在近场声场分布形状上的连续性得到了极大提升,后续的仿真与仿体成像实验也表明,非均匀阵元分布结构明显改善了多角度平面波复合成像结果,尤其针对近场伪影、分辨率等问题。三、针对提出的非均匀凸阵结构模型,结合实际的实验条件,利用商用凸阵探头的发射变迹设置这一便捷的实现方式,避免了凸阵制作繁杂的制作过程,设计并实现了一款非均匀凸阵换能器。通过声场仿真、成像仿真等理论实验,以及仿体成像实验,验证了非均匀凸阵的优势,在不增加成像系统复杂度的情况下,有效扩大了成像范围,并且将图像质量保持在与均匀凸阵相当的水平。四、结合多角度平面波和发散波复合成像框架的相关研究内容,统一为非聚焦波复合成像算法,并利用算力强大的GPU平台加速了聚焦波复合成像算法。构建参数开放度高的超声成像控制平台,利用多线程并行的程序架构有效缩短了积累超声回波数据时间,并统一移植以上适用于非均匀结构阵列分布的成像框架,为非均匀阵列式超声换能器的成像提供了更加便捷的验证手段。
其他文献
本论文阐述了我在攻读博士学位期间对幺正费米气体在超流相变附近的物理性质所进行的实验研究。依托一套全新的超冷锂镝原子实验装置,我们使用6Li原子制备出了密度均匀的幺正费米简并气体,并且改良了布拉格谱技术和可分辨动量的射频谱技术,从而对热力学性质、声波的传播与衰减、线性输运、谱函数、赝能隙等问题展开了更加深入的探索。与简谐势阱相比,盒型势阱的优势在于可以制备密度均匀的量子简并气体,而密度的均匀性则有利
以石墨烯为代表的二维层状材料以其新颖的材料性能、优异的电磁学、光学、热力学性质受到了凝聚态物理学界广泛的关注。由于某一维度上的尺寸减小到原子层厚度,二维层状材料在面内与面外两个方向均展现了新奇的电子输运特性。关于面内输运的研究,研究者们希望通过量子反常霍尔效应无能隙的边缘态实现低耗散的电子输运。虽然受拓扑保护的边缘态具有鲁棒性,但实际材料中存在的各种强无序仍会阻碍以它为基础的电子器件的设计,造成安
伴随着科技和时代的不断进步与发展,企业与企业之间正处在一个极大的竞争环境中,产品和价格已经不再是决定一个企业成败与否的关键因素,对于许多跨国企业而言,企业要想在竞争激烈的社会环境中取得优势并获利,客户关系对企业起了至关重要的作用。本文以S公司作为研究对象,它是一家在中国设立的专业生产汽车维修工具的美国集团公司,主要的客户群体是该集团在各国(地区)设立的子公司并作为内部客户来维护。随着这两年全球疫情
在特定的外部刺激下,具有变构功能的DNA分子器件可以在不同构象之间进行切换,改变其形状特征,重排空间构象甚至提升性能。近年来,适配体、三链体、G-四链体和i-motif等功能核酸已经成为刺激响应型DNA器件的变构元件,特别是它们对内源性ATP、pH和K+等刺激物特异性响应的特征使它们成为活细胞成像、细胞逻辑计算、药物靶向递送和分子医学等领域的强大工具。但利用DNA构建刺激响应型的分子器件仍有问题需
热固性树脂是一种可以实现三维交联并具有稳定分子网络结构的聚合物。热固性树脂具有优异的机械性能、突出的耐温性能和丰富的可加工特性等优点,因而在工业化生产过程中获得了广泛的应用。热固性树脂基多孔材料,简称热固性多孔材料,以其独特的孔道结构带来的新颖物理化学性质,在工业建筑、能源存储与转化、传感器和生物医疗等领域展现出了广阔的应用前景。伴随着高分子科学和纳米科学的迅速发展,各种热固性多孔材料不断涌现,造
超大规模神经元集群的结构重建与形态分析是脑科学领域里的重要研究课题,在计算神经生物学中有着广泛应用。神经元形态是神经元活动、神经可塑性和神经连通性的关键性决定因素,被认为与神经元的生理特性和神经功能密切相关。随着光学显微成像技术的发展,从超大规模脑图像中重建出超大规模神经元集群并对这些神经元形态数据进行分析,对于研究神经系统机理有着至关重要的作用,并对老年痴呆症和阿尔茨海默病等脑神经相关疾病的研究
卤化铅钙钛矿材料具有带隙连续可调、消光系数高以及缺陷容忍度高等优异性质。经过十余年的快速发展,以这种材料为核心的钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)的实验室转换效率已经突破25%,部分性能指标可与传统硅基和薄膜光伏电池相媲美,极具发展潜力。现有卤化铅钙钛矿薄膜制备以低温液相合成为基础,这种工艺流程简单,但所制备的薄膜内部通常存在大量缺陷,导致薄膜内易发生离子迁
随着电磁波技术的应用和发展,人类生存空间的电磁环境日益恶化。微波吸收与屏蔽材料对避免电磁干扰、保护人员安全、提高设备可靠性、确保网络系统的安全畅通有重要意义。新型的三元层状过渡金属碳/氮化合物MAX相由于其独特的层状结构和键合特点使其兼具金属与陶瓷的优异性能,如较高的强度和模量,良好的导热与导电性、抗氧化、耐腐蚀、化学稳定性,以及可加工性等。作为一种新型的微波吸收与屏蔽材料有广阔的应用前景,并且已
远距离量子纠缠的分发是目前量子通信所面临的主要挑战之一,它的实现对构建全球化的量子网络来说至关重要。光子是我们最常用的编码量子信息的载体,但是光子在光纤中不可避免的损耗使得纠缠分发难以在数百公里以外的距离上实现。幸运的是,量子中继方案提供了一种在远距离节点之间建立纠缠的手段,为构建量子网络开辟了道路。其基本原理是:远距离的量子通信链路被切分成数个短距离的基本链路,首先建立基本链路内节点的纠缠,然后
杂环化合物,尤其是具有刚性骨架的含氮杂环化合物,广泛存在于天然产物及药物分子中,在生命科学、合成化学和材料科学等领域发挥着重要作用。因此,化学家们对杂环化合物的构筑给予了高度关注,并发展了多种合成方法。然而,这些方法仍存在着一定的局限性,因此开发高步骤经济性和高原子经济性的杂环化合物的合成方法具有重要的意义和价值。共轭二烯作为一类简单易得的有机合成原料,被广泛应用于过渡金属催化或有机小分子催化的环