汽车关键零部件摆辗成形装备静/动力学分析

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:yangzi_job
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
摆辗成形是一种先进的金属成形制造工艺,具有成形力小、材料利用率高、成形零部件性能好等优点,被广泛用于制造圆盘类、法兰类和齿轮类汽车关键零部件。摆辗成形装备在服役过程中产生较大的应力、弹性变形和振动,对汽车零部件摆辗成形精度和摆辗成形装备服役寿命具有重要影响。因此,迫切需要开展汽车关键零部件摆辗成形装备静力学与动力学研究。本文采用理论计算、有限元模拟和实验验证相结合的方法,开展6300k N摆辗成形装备静力学与动力学分析,主要研究内容如下:(1)建立了摆辗成形装备静力学有限元模拟模型,揭示了装备应力、弹性变形分布规律以及装备各阶模态频率和振型规律。开展了装备应变测试实验,结果表明,最大成形载荷条件下摆辗成形装备应变有限元模拟值与应变实验测试值最大相对误差小于10%,验证了摆辗成形装备静力学有限元模拟模型的有效性。(2)建立了摆辗成形装备动力学模型,计算获得了装备振动加速度时域曲线和幅频曲线,揭示了装备水平振动特性和垂直振动特性。开展了装备振动测试实验,结果表明,理论计算和试验测试获得的摆辗成形装备加速度幅频曲线峰值及其对应频率值最大绝对误差分别为0.558m/s~2和8Hz,验证了摆辗成形装备动力学模型的有效性。(3)根据摆辗成形装备静力学分析获得的应力、弹性变形分布规律,以减小装备应力和弹性变形为目标,对装备机架进行了结构优化设计。根据摆辗成形装备水平方向动力学模型,以减小装备水平振动为目标,对装备摆头驱动系统参数(内外偏心套转速和内外偏心距)进行了优化设计。根据摆辗成形装备垂直方向动力学模型,以减小装备垂直振动为目标,对装备摆头参数(摆头和轴承之间刚度与阻尼、摆头质量、吸振器等)进行了优化设计。本文揭示了摆辗成形装备服役过程中应力、弹性变形分布规律与振动特性,提出了装备应力、弹性变形和振动控制方法,对于提高汽车关键零部件摆辗成形精度和摆辗成形装备服役寿命具有一定的理论和实际工程价值。
其他文献
汽车轻量化和安全性是国家重大需求,也是汽车重要的发展方向。高强钢热冲压构件在保证汽车轻量化的同时满足安全性能要求。然而,热冲压时高温变形组织急剧变化,导致成形后构件塑韧性大幅下降,造成强韧性协调困难。将伺服成形与热冲压工艺结合,调控构件微观组织结构,是解决强韧性协同问题的有效途径。基于此,本文提出基于非均匀有理B样条模型和热加工图的伺服工艺设计方法,并通过热力耦合变形条件调控获得超细马贝复相组织,
学位
在全球能源短缺、环境恶化、排放法规日益严格的背景下,节能环保成为汽车工业发展的主题,发展新能源汽车已成为当下潮流。混合动力汽车因兼具纯电动汽车与传统汽车的优点成为当前研究热点,其中增程式汽车被认为是从传统的燃油汽车向纯电动汽车过渡的理想车型,因此本文以增程式汽车为研究对象,展开参数匹配设计和控制策略及优化研究。首先根据整车基本参数和性能指标设计要求,结合汽车理论及电动汽车设计相关知识,对增程式汽车
学位
车辆队列行驶作为一种具有代表性的智能驾驶模式,可有效减小车辆的气动阻力,在减少燃料消耗及尾气排放方面具有巨大的潜力。但由于队列行驶时间距减小,后车进入前车尾流区,导致后车发动机舱内散热条件变得恶劣,若调整风扇转速以满足发动机散热需求,则后车因气动阻力降低而节省的油耗将受到影响。因此,在研究队列车辆燃油经济性时,考虑发动机散热性能是十分必要的。本文以三辆轿车队列及轿车尾随半挂车队列为例,利用三维流场
学位
近年来,都市化进程加快,城市停车设备无法满足日益增长的停车需求,机械式立体车库凭借提升城市空间利用率、环境适应能力强等独特的优势已然成为解决城市停车难民生问题的重要方法之一。但是,立体车库整体结构笨重,相关优化技术落后,无法获得立体车库最佳的轻量化和高性能综合优化结果。针对上述背景,本文以垂直循环式立体车库为研究对象,采用试验设计、近似模型等技术,对多工况下立体车库进行静力、防风、抗震等力学性能分
学位
质子交换膜燃料电池是一种高效、清洁的新型能源,具有广阔的应用前景。它在长期运行或者闲置后,容易发生应力松弛,这会增加金属双极板与膜电极组件之间的接触电阻,导致质子交换膜燃料电池堆的性能和寿命下降。因此补偿电池电堆应力松弛,维持电堆正常工作的夹紧力,提高电池的性能和延长寿命具有重要意义。本文基于准零刚度理论,对25Kw燃料电池电堆的应力补偿问题进行了研究,主要工作和结论如下:(1)针对通常所用的利用
学位
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell:PEMFC)具有效率高、响应速度快等优点,被认为是最有前途的能量转换装置之一。在PEMFC的组成中,夹在微孔层和膜之间的催化剂层(Catalyst Layer:CL)是最复杂和最重要的,因为它是发生能量转换的地方。PEMFC催化层微观结构对燃料电池性能的影响并不像其它组成结构那样简单,因为催化层中的各种组分和
学位
近年来,我国商用车发展迅猛、数量激增。但与发达国家相比,我国商用车重量偏大,不利于节能减排。另一方面,商用车保有量的增长给交通安全带来了严峻的考验。不同于乘用车,商用车驾驶室缺乏足够的吸能区,碰撞时,乘员安全极易受到威胁。针对以上问题,本文以某轻卡驾驶室为研究对象,采用基于遗传算法权重配比的组合近似模型,结合多目标优化算法,协同考虑轻量化和耐撞性,对驾驶室进行了结构优化。研究成果对促进商用车驾驶室
学位
近年来,传统燃油车向新能源车转型升级已成为世界范围内汽车工业的共同发展趋势,纯电动汽车是其主要发展方向。本文以纯电动商用车为研究对象,考虑到坡道行驶过程中驾驶员的不合理操作通常会使其能耗增加,且坡道行驶涉及车辆重力势能转换,其降低能耗的潜力巨大。同时考虑到重型商用车下长坡、陡坡过程中可能出现制动热衰退的危险情况,本文以防止制动器温度过高和降低行驶能耗为目标,对纯电动商用车坡道行驶车速规划进行研究。
学位
增材制造过程中由于温度变化剧烈,工件内部会产生气孔、裂纹等缺陷,影响工件安全使用,因此对增材制造工件缺陷进行无损检测尤为重要。常规超声检测方法受高温限制、耦合要求等因素影响,在增材制件缺陷检测中较为局限;激光超声作为一种新型无损检测方法,可以实现高灵敏非接触实时检测,满足增材制件缺陷检测需求。为此,针对增材制件缺陷常规方式检测应用困难,激光超声设备自动化程度低的问题,以电弧增材制件为检测对象,建立
学位
动力电池包作为纯电动汽车的储能装置和动力来源,直接地影响了整车续航里程。然而,受制于电芯材料技术的发展瓶颈,纯电动汽车要提高续航里程,就只能通过增加动力电池数量,在一方面增加了整车的整备质量,另一方面电池数量的增多也使得动力电池包内部零件变多,降低了生产装配效率。伴随着日益严苛的新能源汽车补贴标准及纯电动汽车市场规模扩大的需求,现有的动力电池包的结构设计和生产装配效率已无法满足行业需求。因此,研究
学位