镍(钴)、铋基电极活性材料的制备及其电化学性能研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:Monalisacode
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对锂离子等有机电池体系存在的安全隐患及高成本,铅酸电池、镍//镉水系电池存在的强毒性等问题,探索开发新型的水系可充电电池势在必行。铋在KOH水系电解液中具有相对较低的氧化还原反应电位窗口(-1.0-0 V),可发生多电子法拉第反应,且无毒、成本低,是一种优异的水系可充电电池负极活性材料。基于目前水系可充电镍//铋电池的相关研究和水系混合超级电容器电池类活性材料的研究基础,本课题通过形貌调控和结构设计制备出一系列镍(钴)基高活性混合超级电容器用电池类正极活性材料,以6 M KOH水溶液为电解液,结合
其他文献
与传统的脉宽调制(Pulse width modulation,PWM)变换器相比,谐振变换器能够有效减小开关损耗,使得开关频率得以进一步的提高。谐振变换器的开关频率越高,变压器、电感和电容的体积越小。此外,平滑变化的波形和较小的电压电流变化率也有利于改善谐振变换器系统的电磁兼容性。但谐振变换器需要由一定数量的电感和电容组成的谐振网络,造成它的分析和设计更为复杂。通过精心设计谐振网络,可以使得谐振
学位
全球气候变化引起的气温增加影响农业生产。气温增加引起的高温胁迫严重制约水稻的生长发育、生理生化过程及产量形成,这些过程均与植株水分状况相关。水分亏缺不仅直接影响植株生长发育,也可能通过改变与水分相关的生理过程来影响花器官水分状况,从而影响产量形成。因此,提高植株水分吸收和运输有利于提高植株的高温适应性和抗性。本研究针对水稻生长过程所面临的高温胁迫,研究水稻水分状况对高温的响应特征及其与高温抗性的关
学位
棉花是主要的纤维作物,其生长发育易受到水分、盐碱和极端温度等非生物胁迫的影响。由于全球气候变暖导致的极端干旱环境及灌溉用水减少,干旱胁迫成为限制棉花生产的主要因素。因此,挖掘棉花抗旱基因并解析其干旱胁迫响应机制,对于培育耐旱棉花新品种非常重要。促分裂原活化蛋白激酶(MAPK)级联途径是一条重要的信号转导途径,广泛参与植物响应干旱胁迫过程。目前,棉花MAPK级联途径参与的干旱胁迫调控网络并不清晰。本
学位
细胞质雄性不育(Cytoplasmic Male Sterility,CMS)是一种由线粒体基因异常引起的具有母性遗传特征的性状,在高等植物中很常见。在农作物中,CMS系是杂种优势利用中极为重要的遗传资源,广泛应用于杂交育种。棉花是我国重要的纤维作物,随着我国植棉面积的下降,提高棉花产量是棉花育种的一大目标。棉花具有非常明显的杂种优势,产量和品质的杂种优势在棉花的育种中被广泛利用。细胞质雄性不育系
学位
黄萎病是大丽轮枝菌引起的土传真菌性病害,严重制约着我国的棉花安全生产。抗病相关基因的挖掘及抗病分子机制的解析对棉花抗病品种的创制具有重要意义。本研究基于调控棉花木质素合成并介导广谱抗性的基因GhLac1,通过酵母单杂交文库筛选结合双荧光素酶报告基因实验鉴定到5个可直接激活或抑制GhLac1表达的调控基因。其中GhMYB4是GhLac1的负调控因子,GhWRKY30、GhWRKY41、GhMYB42
学位
直接空冷机组采用环境空气代替水直接冷却汽轮机乏汽,具有节水率高、运行灵活、系统简单等优势,是我国煤炭资源丰富而水资源匮乏的北方地区发展火电事业的首要选择。直接空冷凝汽器压力是冷端系统的重要参数,是机组运行经济性和稳定性的综合体现。因此,对直接空冷机组冷端系统进行经济优化研究,对于降低机组煤耗率、改善机组控制效果、提升机组运行经济性具有重要意义。为此,本文首先研究了直接空冷机组冷端系统的动态建模,并
学位
海洋监测是海洋综合管理的基础,能够检测和预测海洋环境质量,为有效利用海洋资源和保护海洋环境提供信息和依据。随着微电子技术的发展,由大量微型传感器节点组成的无线传感器网络(WSN)已经开始被部署在海洋中进行信息的采集和处理工作。它成本低廉,布局灵活,覆盖面广,信噪比高,容错性强,在海洋环境监测领域应用性很强。但是,供电问题成为限制传感节点应用的因素,传统的供电方式包括化学电池和电缆铺设,二者由于成本
学位
进入21世纪,全球经济快速发展,国家日新月异,但经济的发展导致化石能源的愈发枯竭以及环境的恶化,催生了人们对清洁可再生能源的极大热情,电能作为清洁可再生能源的传输形式有着不可或缺的独特优势,其在各个行业和不同领域发挥着越来越重要的作用。在交通运输领域,各国为推动交通工具的电驱动发展做出了大量努力,新能源汽车逐渐取代化石能源汽车;在消费电子行业,智能手机、平板电脑、可穿戴等设备近年来迅速占领日常生活
学位
为应对能源和环境方面的双重压力,发展新能源汽车已成为未来交通端的重要趋势。我国《新能源汽车产业发展规划(2021-2035年)》提出,到2035年,纯电动汽车成为新销售车辆的主流,公共领域用车全面电动化。在“新基建”浪潮下,大规模电动汽车接入对电网产生的影响不可忽视。电动汽车充电负荷具有很强的时空不确定性,大量电动汽车无序接入给配电网的运行控制增加了难度。而采用合理的调控策略及引导措施对电动汽车充
学位
锂金属负极由于其极低的密度(0.534 g cm~(-3)),超高的理论容量(3861 m Ahg~(-1))以及极低的电化学电位(-3.04 V vs.标准氢电极(SHE))而被认为是下一代高比能二次电池负极材料的最佳选择。然而,锂金属负极在反复充放电过程中产生的枝晶问题,导致其容量衰减,循环性能下降,更为严重的是由此引发的起火、爆炸等安全问题极大地制约了锂金属负极的商业化应用。当前研究者提出了
学位