论文部分内容阅读
循环流化床锅炉(CFBB)因其燃料适应性广、燃烧效率高和负荷调节范围大等优势,已成为当前燃煤电厂的首选炉型。炉内固硫技术是循环流化床锅炉实现超低排放的关键,但在实际生产过程中,仍存在固硫剂利用率较低、经济环境效益有待提高等问题。影响固硫剂利用效率的因素主要包括固硫剂种类、粒径、炉温、气氛等,以往大部分研究的重点为各因素对分解和固硫单个反应的影响,但固硫剂在炉内的真实反应情况也应得到重视,即分解硫酸盐化反应同步发生。因此,本文研究了传统钙基固硫剂石灰石和固废基钙基固硫剂电石渣的粒径差异、温度、反应气氛对固硫剂分解、硫酸盐化反应的影响,通过比较同步与分步分解硫酸盐化的异同,揭示了同步反应模式下分解硫酸盐化两个反应的相互作用机制,进一步探讨了钙基固硫剂炉内的固硫机理。主要开展的内容和结论如下:(1)取晋城石灰石和襄垣电石渣为研究对象,通过非等温实验研究粒径、CO2浓度对两种固硫剂热分解行为的影响,并进行动力学计算。研究表明石灰石的活化能随粒径减小而减小。对石灰石来说,CO2浓度的升高使化学平衡向逆反应方向移动,不利于分解反应的进行;对电石渣来说,CO2浓度的升高有利于Ca(OH)2发生碳酸盐化反应并且阻碍生成的CaCO3进一步分解。(2)通过对比石灰石分步和同步分解硫酸盐化反应行为的差异,对同步反应中两个反应的相互作用及反应机理进行了探讨。研究发现石灰石同步分解硫酸盐化时,由于硫酸盐化反应生成的CaSO4堵塞孔道,导致内部的CaCO3分解受阻,硫酸盐化反应对分解反应有减缓作用。随着粒径减小,减缓作用减弱,粒径为0.105-0.200 mm时减缓作用消失。同步分解硫酸盐化反应的最终固硫性能比分步反应模式下的差,差距可达25%左右,因为在硫酸盐化反应控制阶段,反应物CaO含量不足,且在减缓作用的影响下,由分解反应产生的比表面积和有效孔径比石灰石在纯分解时产生的小,因此在反应后期扩散控制阶段的阻力较大。进一步通过等温实验研究粒径、温度、CO2浓度对石灰石同步与分步分解硫酸盐化过程的影响。研究表明粒径越小,石灰石固硫性能越好,0.105-0.200 mm的钙利用率达45%,2.50-2.75 mm的钙利用率只有5.66%,CaCO3分解完全后产物层扩散阻力是制约大粒径石灰石固硫性能的主要原因;在低温区(650℃、750℃)分解反应是制约同步模式下固硫性能的主要原因,因为此时分解反应平衡向逆反应移动,无充足CaO用于固硫,在高温区固硫性能随温度升高而减小,850℃的钙利用率比950℃的高7.2%,这可能与CaO在高温下发生烧结和固硫速率过快有关;高CO2浓度对石灰石分解有明显抑制作用,实际运行的CFBB中,硫酸盐化反应与碳酸盐化反应的竞争过程将直接影响石灰石的炉内固硫性能。(3)通过等温实验研究粒径、温度、CO2浓度对电石渣同步分解硫酸盐化行为的影响,并用XRD对反应过程产物进行表征。结果表明:粒径对电石渣同步分解硫酸盐化反应影响不大。在高温区(850℃、950℃)电石渣的固硫性能随温度升高而增强,850℃时钙利用率可达80.83%,约为同等条件下石灰石的两倍;在低温区(650℃、750℃)电石渣入炉后生成的CaCO3难以分解完全,碳酸盐化反应与硫酸盐化反应存在竞争,不利于硫酸盐化反应的发生。当CO2浓度大于70%时,生成的CaCO3难以分解完全,用于硫酸盐化反应的CaO含量不足,阻碍了硫酸盐化反应;当CO2浓度在35%以内时,电石渣在前期的固硫性能随CO2浓度升高减弱,但最终的固硫性能无大差异。本文通过研究钙基固硫剂炉内固硫性能和机理,得到石灰石在同步反应模式下,硫酸盐化反应对分解反应具有减缓作用,同时分解反应对硫酸盐化反应的影响使得其最终固硫性能低于分步反应模式。并从同步反应机理角度研究了各因素对固硫剂固硫性能的影响机制,可为钙基固硫剂在炉内的实际应用供理论依据。