【摘 要】
:
在自由空间激光通信及量子通信中,由于空间激光束散角较小,需要利用捕获(Acquisition)、跟踪(Tracking)、瞄准(Pointing)(ATP)系统来实现通信链路的构建和保持。ATP系统通过将目标光斑在面阵探测器上的位置变化与跟踪机构形成闭环控制,以实现精确跟踪与指向,具备多信息维度、灵活变窗等优点,但是面阵探测器上信标光斑位置的探测精度将会直接影响整个ATP系统的跟踪指向精度。本文面
【机 构】
:
中国科学院大学(中国科学院上海技术物理研究所)
【出 处】
:
中国科学院大学(中国科学院上海技术物理研究所)
论文部分内容阅读
在自由空间激光通信及量子通信中,由于空间激光束散角较小,需要利用捕获(Acquisition)、跟踪(Tracking)、瞄准(Pointing)(ATP)系统来实现通信链路的构建和保持。ATP系统通过将目标光斑在面阵探测器上的位置变化与跟踪机构形成闭环控制,以实现精确跟踪与指向,具备多信息维度、灵活变窗等优点,但是面阵探测器上信标光斑位置的探测精度将会直接影响整个ATP系统的跟踪指向精度。本文面向亚微弧度的高精度捕获跟踪与瞄准问题,从软件和算法层面研究降低面阵探测器光斑位置探测误差的方法和技术,以满足未来远距离空间光通信系统需求。本文系统分析了为光斑位置探测带来误差的因素,仿真研究了这些因素对探测精度的影响。为了有效分析误差影响,正确开展实验,高效处理数据,按照来源、特点和性质将这些因素带来的探测误差划分为系统误差和随机误差两种类型。面向探测随机误差高精度度量需求,综合考虑探测器本底噪声、光照强度、光斑尺寸等因素,建立推导了不依赖于光学系统点扩散函数的目标探测随机误差度量模型即随机噪声等效角(Noise Equivalent Error,NEA)。利用此NEA不仅能对面阵探测器上任意形状的光斑目标定位随机误差进行高效高精度定量化衡量,而且能得出当随机因素带来的探测误差可忽略不计时的边界条件。分析了面阵探测器像元响应非均匀性对探测精度的影响,设计了基于LM回归的探测器非均匀性校正算法,解决了非均匀性带来的光斑探测系统误差问题。基于已有数据建立出不同光照强度下的像元响应模型,仿真生成包含不同种类非均匀性的光斑图像,分类讨论不同种类的非均匀性对光斑质心探测精度的影响,使用仿真图像验证了所提出的校正算法具有良好的性能。搭建了地面实验系统,对提出的NEA模型、像元响应模型和响应非均匀性校正算法进行验证。开展不同光照强度下的探测器响应曲线测定实验和光斑质心精度测量实验,取得了预期的实验效果。仿真和实验结果表明,所建立的模型相比于传统的模型有更高的通用性和测量高效准确性,所提出的非均匀性校正算法相比于传统的方法在实现预期探测精度:探测误差不超过0.025pixel的同时,能有效降低时间和存储开销。研究成果对更高精度ATP系统的研制具有一定的借鉴意义。
其他文献
发展党员是加强党的组织建设和完善党的组织体系的一项基础性工作。党的十九大通过的《中国共产党章程(修正案)》第一章第五条增写:"发展党员,必须把政治标准放在首位……"深刻认识和把握"发展党员,必须把政治标准放在首位"这一基本原则和要求,对于新时代党员队伍建设和全面从严治党具有重要的理论意义和现实意义。充分认识政治标准对高质量党建的重要意义贯彻落实新时代党的组织路线的生动体现。2018年7月,习
当今工作环境所面临的挑战之一是增强企业创新力,从而提高员工的创造力。领导行为对创造力的产生有重大影响。赋权领导行为是一种未被意识到的重要领导类型之一。为此,本研究将结合领导行为、赋权和创造力的理论,深入研究这种类型的领导力。关于领导力的研究通常涉及一位对团队或员工群体拥有管理权的特定领导者。赋权领导行为是对领导力的一种逐渐发展的感知,认为这是一种集团层面的现象。它建立在诸如自我领导、半自主性和自我
脓毒症是一种由感染导致的危重症,是ICU中患者死亡的主要原因之一。脓毒症病情发展迅速,有效抢救时间较短,越晚发现患者生存率就越低,救治的关键在于及时确诊并进行干预治疗。本文根据临床诊断的实际需求基于深度学习和机器学习技术开展了不同场景下对早期脓毒症进行预测诊断的研究,主要包括:根据入院首次检验数据对患者进行脓毒症预测、根据部分检验数据进行分阶段实时脓毒症预测、根据患者住院期间检查的数据对脓毒症进行
多变价态的钒元素造就了种类繁多、特性各异的钒氧化合物体系,而金属-绝缘体转变无疑是该体系的基础研究和应用备受关注的特性之一。该转变过程中,飞秒级的电导转变速率促进了氧化钒材料在探测、开关、存储等先进电子器件中应用。值得关注的是,关于氧化钒材料金属-绝缘体转变的研究在上世纪60年代就已展开。然而,转变的物理机制一直是氧化钒材料体系中未能解决的关键问题之一。其研究难点一方面在于金属-绝缘体转变通常伴随
光在人类认知这个世界过程中扮演着重要的角色,也一直是物理学中重要的研究方向。随着人类对光的本质的不断理解加深,从最初微粒说到波动说再到最终光的波粒二象性的准确描述,引发了多次光学上的重大突破。然而,构成这些光学系统的自然材料的可调控自由度有限,无法对光的振幅、相位以及偏振等诸多性质都进行精确操控,也难以满足现代化高性能、多功能以及小型化的需求。上述问题的出现,促使了人们开始尝试利用由亚波长人工设计
目的探讨家属赋能教育模式在骨质疏松脊柱压缩性骨折(OVCF)患者健康教育中的应用效果,为优化此类患者护理模式提供参考依据。方法选取2020年6—12月某医院收治的骨质疏松脊柱压缩性骨折患者116例为研究对象,按照组间基线资料匹配的原则将患者分为对照组和干预组,每组58例,两组均给予常规护理及健康教育,干预组同时给予家属赋能教育模式。比较两组入院时、出院前日常生活能力(Barthel指数)评分、健康
量子阱-发光二极管(QWIP-LED)上转换红外探测器将中波红外信号转换为近红外光,并由大面阵硅基CCD直接读出,因此具有制备成为大规模、高质量、低功耗红外探测器的潜力,成为红外探测的一种新途径。目前基于QWIP-LED的量子效率的研究主要集中在提高QWIP的光响应上。但由于近红外LED的光读出效率受全内反射效应影响,有效出光效率仅为1%至2%左右,因此QWIP-LED的探测效率和成像质量受限于L
声音分类是机器学习领域的一个重要分支,一般将它细分为环境声分类,人声分类、音乐分类三个大类。近年来随着DCASE等比赛的举办,也让越来越多的学者开始重视这一领域的研究。目前这项技术在医疗诊断、场景分析、声者识别、生态环境分析等场景中都被广泛使用。传统声音分类方法主要使用神经网络来实现,虽然它们的准确性不断提高,但是这种方式目前还有两个问题。首先是在数据的预处理方面,使用神经网络进行声音分类任务一般
红外弱小目标检测与主动跟踪是红外搜索跟踪系统(Infrared Search and Track,IRST)的核心技术,在民用航空安全监测有着至关重要的作用。由于成像距离极远以及红外探测器本身成像的特性,红外弱小目标在图像上总是呈现成像像素少、局部信杂比极低的特点,为红外弱小目标的检测和跟踪带来极大的困难,造成检测的精度不高,漏检率偏高的局面。本文在前人工作的基础上,以提高天空背景极低局部信杂比下
随着医疗信息化的进程不断发展,医疗数据呈现爆炸式增长,医疗大数据的传输、存储、处理和可视化方面都面临着不小的挑战。医疗机构信息系统相互独立,在各项政策的引导下建立了电子病历系统、区域(或跨域)电子健康档案平台、区域数据中心等,病人数据量的不断增多导致医生在查询病人历史记录时存在操作繁琐、数据展现延迟、效率低等问题。如何解决医疗机构内和机构之间医疗数据的传输和存储问题已经成为当前医疗信息系统的短板。