基于深度学习的肝脏和肿瘤图像分割方法研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:chenchenhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
肝脏肿瘤的发病率很高,肝脏恶性肿瘤是最致命的癌症之一。为了对肝脏肿瘤进行有效,及时的治疗,对肝脏和肿瘤的精确分割是现今医疗影像分析中的热点课题。如果能实现医疗影像的自动化处理,得到准确的肿瘤位置,将会有助于肝脏肿瘤的治疗。随着近几十年来计算机算力的爆炸式提升,深度学习已经为计算机视觉,自然语言处理等方面贡献了很多算法。在医学图像方面,U-Net网络由于需要的数据集少,处理高复杂度图像效果好的特性,在医学影像的处理这一领域受到了广泛的应用。但是肝肿瘤出现的位置,形状,大小和数量难以预测,U-Net网络在肝脏肿瘤分割这一任务中表现不佳。有学者提出了Modified U-Net网络,在U-Net网络的跳跃连接过程中加入了阻塞反卷积,实现了对大物体和小物体自适应过滤的功能,取得了良好的效果。但是该网络在分割不同大小的肿瘤时,并不能完全准确地分割肿瘤的边界,还有改进的空间。本文在该网络的基础上对肝脏和肿瘤的语义分割算法提出了一系列的改进,所提出算法的评价指标有明显的提升。对数据的处理直接影响语义分割算法的分割结果。本文首先提取了CT图像中肝脏和肿瘤的特征,并对训练数据使用随机的仿射变换和弹性变换,大幅增加了数据数量。然后本文在Modified U-Net网络的基础上进行改进,提出了CE-m UNet网络。在网络中添加了DAC模块和RMP模块,提取多尺度信息,增强了网络对于不同大小的肿瘤的特征提取能力。通过消融实验验证,本文所提出的CE-m UNet网络取得了比原网络更好的分割效果。为了进一步提高对肝脏和肿瘤的分割效果,本文对提出的算法进行了优化。在网络结构方面,基于注意力机制,本文提出了ACE-m UNet网络。在CEm UNet网络中引入了注意力机制,让网络更加注重肝脏和肿瘤的边界,在加快模型收敛的同时提高了肝脏肿瘤的分割能力。另一方面本文还对训练使用的损失函数进行了优化,由于交叉熵损失函数对肿瘤分割效果不理想,Tversky损失函数,本文提出了一种综合了两种损失函数的优点的混合损失函数。通过消融实验对比验证了提出的优化方法可以取得优秀的分割结果。
其他文献
针对多飞行器突防策略设计问题,本文研究的主要突防对象为敌方航母编队,航母编队具备响应迅速、精准打击的反导系统,如果要实现对航母编队的攻击,就必须能够突破航母编队的防御系统。对于航母编队的中远防区,飞行器突防面临的主要难题如何突破航母编队预警机的搜索,当飞行器被预警机探测到之后,将遭受到航母编队反导系统的精准打击,卫星的特点并不支持我们获得预警机的实时位置,因此在这种情况下,如果要实现对航母编队防区
学位
四旋翼无人机(简称四旋翼)因其结构设计灵活、可操纵性高、任务适应性强等优势,在军民领域应用广泛。鉴于四旋翼飞行动力学的欠驱动、非线性、强耦合等特点以及高机动时难以避免的复杂外界扰动(如环境突风、紊流)与严格输入限制(如电机拉力、力矩),其飞行控制系统设计仍面临诸多挑战。本文以小型四旋翼为对象,深度融合非线性动态逆、滑模变结构、神经网络等现代控制技术,针对其在扰动环境和输入受限情形下的姿态高性能控制
学位
武器性能、战术策略对战争胜负影响巨大。本文在武器性能的基础上,设计针对来袭高超声速制导火箭弹的拦截策略。本文的主要工作内容如下:建立导弹运动学及动力学模型。将导弹视为质点,建立三维空间下的火箭弹动力学模型和运动学模型,对于影响火箭弹弹道性能的大气参数,使用了USSA76标准大气模型。针对某型制导火箭弹,根据气动布局公开资料反推其动力学参数模型,并设计弹道验证模型的准确性。同时为方便描述影响导弹运动
学位
高超声速飞行器具有机动大、速度高、航程远、威胁强等特点,现在成为世界各国全力发展的武器装备。随着高超声速武器的发展,对其进行拦截和防御也逐渐成为热门而充满挑战性的课题。拦截高超声速目标的挑战性体现于高超声速飞行器难以探测、难以识别和难以预报。本文主要研究在具有禁飞区的复杂约束条件下,基于深度学习方法对高超声速目标的运动行为进行识别。本文的主要工作如下:首先,在合适的坐标系下对高超声速目标进行运动学
学位
现代军事中,弹道导弹进攻与反导系统防御的对决在战争中扮演的作用日益突出。拥有坚固可靠的反导防御系统能够让国家在强强对话中更有保卫自身国土安全的底气,大大提高国家的综合国力。世界上目前反导实力最强的国家无疑是美国,经过了近四十年的发展,美国已经形成了全方位、全天候、多层次、甚至覆盖全球的反导系统。本文选择了美国反导系统中较为有代表性的反导单元——宙斯盾反导系统进行研究,对其主要作战导弹“标准-3”拦
学位
基于深度学习的医学图像处理技术是科学研究的重要方向之一,也是智慧医疗中的一种关键的辅助诊断手段。在对放射性肺炎进行诊断时,传统诊断方式是医生对患者的CT图像序列进行仔细查阅,如果医生的专业知识不够深,容易造成诊断失误,尤其是病人众多、炎症区域不便于区分的时候。尽管当前的传统诊断方法能满足诊断基本需求,但也十分考验医生的知识水平,而且诊断流程慢。因此设计快速而准确的智能诊断系统不仅能使诊断效率提升,
学位
自中国国家领导人提出联合共建“一带一路”重大倡议以来,以政治畅通、基础设施连接、贸易顺畅、资本融通、与人民群众互动为重点内涵,将全方位落实共商、协作、共同发展经济作为发展方向,在经济带国家中有很大的反响,得到了很多国家的支持。截至目前共有100多个国家和地区及国外机构大力支持和参与“一带一路”建设工作。随着亚洲基础设施融资商业银行和丝路基金的成立,其作用规模将越来越大,发挥作用也越来越多,全球参与
学位
学位
多智能体系统因其在编队控制、蜂拥控制、人工智能等领域的广泛应用而受到很多关注,其中一致性问题是多智能体系统控制研究领域的基本问题。同时在实际情况中由于执行器物理条件限制,饱和问题不可避免。因此本文研究了具有输入饱和的多智能体系统一致性控制算法,并将其应用于航天器编队控制中,利用Links-RT通用半实物仿真实验平台对设计的控制算法进行实时性和鲁棒性验证。主要研究成果如下:首先,基于虚拟线性多智能体
学位
随着生活质量的提高,市场需求也有了巨大变化,传统的量产模式已经不能满足人们的个性需求。而柔性生产能够小批量地加工定制化的产品,从而满足消费者的多样性需求。传统制造一台机器只加工一道工序,而柔性产线中的每台机器都可以加工多道工序,从而提高了设备的利用率。因此柔性产线被广泛使用。车间生产的调度问题关系着车间的资源利用率和生产效率,因此柔性作业车间调度问题(Flexible Job Shop Sched
学位