小分子离子的紫外光解动力学研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:sherry_yang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小分子离子的光解动力学研究不仅在大气化学和星际化学中有重要的意义,其本身研究的分子结构与解离机理之间的关系也是物理化学中重要的研究内容。本博士论文的主要工作是在低温离子阱结合离子速度成像谱仪上开展了 N2O+和CO2+离子的紫外光解动力学研究和设计搭建了负离子慢电子速度成像实验装置。另外还对C6F5Br在紫外光解离动力学用时间切片离子速度成像装置进行了研究。(1)N2O+离子紫外光解动力学研究用低温离子阱结合离子速度成像谱仪对一氧化二氮离子(N2O+)的B2Π态光解动力学进行研究。用低温离子阱技术
其他文献
目的:1.研究京尼平苷对高糖高脂处理后INS-1细胞及原代大鼠胰岛的胰岛素分泌的影响。2.研究京尼平苷对高糖高脂处理后INS-1细胞的增殖及凋亡的影响。3.研究京尼平苷对糖尿病小鼠(db/db)的抗糖尿病作用。方法:1.用酶联免疫吸附(ELISA)方法,检测京尼平苷干预后的胰岛素水平。用血糖仪测量小鼠血糖,用生化仪测定小鼠糖化血红蛋白。2.用分子对接方法检测京尼平苷与GLP-1受体的结合能力。3.
学位
生物传感器是指利用生物活性材料和信号转换元件共同作用实现对待测物质测量的传感器。生命体的生理活动和生理性疾病通常和标识性的生物化学物质关联,这些标志物的检测对了解生理活动过程以及疾病诊断、治疗和预防具有重要意义。细胞是生命体的基本组成单位,许多疾病由细胞的病变引发。因此,研究细胞的结构和功能,考察细胞的行为活动,如细胞分裂、形态变化和衰老等,对探索生物体的生命活动的规律和生命过程的本质以及重大疾病
学位
间冷式冰箱相较于直冷式冰箱具有自动除霜、多温区、大容积等优势,能为食品保存提供更多温区、更大容积的箱室和更便捷的操作,受到消费者越来越多的青睐。随着社会的发展和人们生活水平的提高,人们对冰箱食品保鲜性能的要求也不断提高,追求更高品质的对食品营养的优质保鲜,因此需要冰箱具备更精确的温度控制性能。然而,传统间冷式冰箱在自动除霜过程中用于融化霜层的热量会进入箱室,造成箱室温度的剧烈波动;多箱室间冷式冰箱
学位
随着间歇性可再生能源在电力市场中比例的上升,水电机组无疑将会面临更为艰巨的调峰调频任务,水轮机必将更加频繁地运行在部分负荷工况以平衡电网参数。尾水管涡带及叶道空化涡是混流式水轮机部分负荷工况下出现的两种典型空化涡流现象,涡结构的演化使水轮机不可避免地经历动态负荷不平衡,所诱发的强烈压力脉动具有更加繁杂的频谱构成,严重制约水轮机高效、稳定运行。本文以混流式水轮机部分负荷工况涡流不稳定特性为目标,采用
学位
磁场的精密测量在地球物理、化学分析、军事、生物医学、材料科学等领域具有重要的意义。在众多的磁场测量技术中,原子磁力计拥有目前最高的测磁灵敏度。原子磁力计的基本原理是通过测量原子的极化矢量在外磁场中的拉莫尔进动频率来获得磁场信息。然而,原子磁力计的探头通常要在近零场(小于10nT)环境才能有效工作。为了使原子磁力计工作在正常的测磁环境,通常利用被动磁屏蔽或主动磁补偿的方法来抑制背景磁场。在被动磁屏蔽
学位
目前,基于半导体材料的光催化技术被认为是一种实用的环境净化处理方法,针对现有光催化剂吸光范围较窄以及电子空穴对再结合速率太快等问题,本论文利用金属硫化物半导体独特的物理和化学性质,开发出了系列能高效去除环境中污染物的新型硫化物基光催化剂。通过考察金属硫化物基复合催化剂对环境污染物的去除活性,结合光催化材料本征结构与光电性质分析,最终阐释了催化剂结构组成-性质-性能三者之间的关系。首先,通过温和的水
学位
本文聚焦于硅基忆阻薄膜及其在仿生突触器件中的应用。首先,对飞秒/连续激光辐照非晶硅(a-Si)薄膜的晶化、局域结构以及光电性质进行研究;其次,采用硅基忆阻薄膜构建并制备两种不同结构的电学忆阻器,并对它们的阻变行为、工作机理以及仿生突触可塑性进行深入研究;最后,基于光与a-Si薄膜相互作用规律的研究成果,巧妙利用光对a-Si薄膜能带结构的调控效应,构建a-Si光电突触,并对其工作机制、仿生突触可塑性
学位
大气气溶胶分布随空间和时间发生剧烈变化,使用各种监测手段对气溶胶进行长期监测对于更加深入了解气溶胶对气候的影响以及对不同气溶胶模型的验证是必要的。目前广泛使用的被动遥感监测如MODIS等为全球气溶胶的大致空间分布提供了丰富的信息,但是被动遥感无法描述气溶胶在垂直方向上的分布情况,而诸如激光雷达之类的主动遥感则提供了气溶胶垂直分布的信息。其中,Raman激光雷达可以准确得到气溶胶光学性质的廓线,但是
学位
砷及其化合物是自然界广泛分布的持久性有毒污染物,砷暴露威胁人类健康。目前的技术无法永久性消除砷污染,因此,砷污染的监测和检测则极为重要。砷污染检测的传统方法依赖于大型的化学分析仪器,费时费力通量低,且需受过训练的专业人员在专门的实验室才能开展。全菌生物传感器是近年发展起来的砷检测新技术,方便、简单且灵敏。但由于细菌细胞壁和细胞膜屏障以及细菌个体代谢反应的干扰等问题,导致检测结果的稳定性较差。为了解
学位
电活性细菌(EAB)具有独特的生理代谢模式和胞外电子传递能力,在废水处理、环境修复、微生物电合成等领域具有巨大的应用潜力。然而电活性细菌双向电子传递(向胞外释放电子和/或从胞外环境摄入电子)的机制仍然未被充分解析,异养电活性细菌的胞外电子摄入和胞内合成代谢这两个过程的关联也尚未被阐明,胞外电子传递能力普遍较低,这些都限制了电活性细菌的实际应用。本学位论文对电活性细菌的双向电子传递机制及调控进行了深
学位