并联式六维加速度传感器的动力学研究

来源 :南京林业大学 | 被引量 : 0次 | 上传用户:wokaoyouyaozhuce
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
六维加速度传感器能够测量完整的空间加速度信息,在高端装备、人工智能等领域应用前景广阔。然而,由于传感器的输入量与输出量之间存在强非线性耦合关系,涉及的构型综合、动力学求解、参数辨识及优化、性能评估及标定等问题一直没有得到解决,严重影响其实用化进程。为此,本课题以并联式六维加速度传感器为研究对象,进行了运动学、动力学的研究,并开展了虚拟样机和实物样机的试验工作。主要研究内容如下:(1)推导了传感器的正向运动学与动力学方程。首先,基于方位特征集理论计算了传感器的自由度和耦合度,以此为指引,通过联立多个回路方程求解了特征点的坐标,基于此构建了传感器的运动学正解模型。其次,构建了传感器的Newton-Euler方程和支链的运动学方程,然后结合上述方程得到传感器的正向动力学方程,推导出输出量关于基础激励的解析表达式。然后,基于ANSYS软件分析了传感器在不同基础激励下各个关键零部件的变形规律。(2)研究了传感器的反向动力学方程及其影响因素。首先,通过引入四元数和四阶叉乘运算,构建了Hamilton正则方程形式的反向动力学方程;通过引入辅助角速度和Routh方程,分别构建了基于Newton-Euler方程的反向动力学方程。其次,通过分析质量块相对于基座的相对运动参量对反向动力学方程的影响规律,证明了进行反向动力学建模时不考虑运动学项时的解算精度和效率更高。然后,运用虚功率原理和特征长度法求得传感器统一量纲的刚度矩阵,基于此,证明了刚度矩阵的最小特征值越大,反向动力学方程的解算精度越高。最后,针对方程中存在小扰动和大扰动时解算结果失效的问题,分别通过监测基座的转动方向交替点和构造关于输入量的协调闭链,构建了对应的误差补偿和故障修复算法。(3)构建了传感器的工作频带模型。首先,基于第二类Lagrange方程建立传感器的运动微分方程,利用解析法和迭代法分别推导出传感器的动力矩阵分别为对角阵和非对角阵时的基频求解算法。其次,基于ADAMS参数化建模功能,提出一种四步法分析传感器工作频率与基频之间的关系,推导出最大工作频率为基频的1/35~1/32。然后,基于最大工作频率与基频之间的关系,定义了工作频带指标,利用空间模型理论分析了该指标与结构参数的分布规律。(4)加工、组装了传感器及试验平台的实物样机并开展了试验研究。基于Lab VIEW软件开发了传感器的虚拟仪器,并介绍了三种振动台的工作原理,基于此提出三种试验方案。基于所提出的试验方案开展了传感器的试验研究,分别验证了本文所建立的动力学数学模型的正确性。
其他文献
土地利用覆盖变化(LUCC)是推动生态质量演变的主要因素,正愈发受到社会各界的重视。林草交错带,对全球气候变化敏感,时空波动性强,边缘效应明显,环境的异质性较高,是指示生态环境质量变化的典型区域。本文以1990、2000、2010和2018年(6-8月)四期Landsat影像和实地调查数据,采用面向对象决策树分类方法,对大兴安岭林草交错带近30年的土地覆盖类型进行分类及变化分析。然后,借助气象数据
化肥替代与减量是“十四五”期间农业与环境高质量发展的国家战略需求。沼液是畜禽养殖粪污厌氧发酵的副产物,富含氮素和作物需要的各类营养物质,是我国种养结合农业发展战略下农田化学氮肥最具潜力的替代品。然而沼液含有微量重金属,长期、过量施用可能会提高土壤重金属的潜在生态风险。生物炭是生物质在缺氧条件下高温裂解产生的富碳多孔物质,由于其具有比表面积大、多孔以及含氧官能团丰富等特性,施用于土壤能通过吸附、螯合
竹材由于其自身的特性容易霉变、变形,严重影响着竹材的加工与利用。添加无机质纳米材料是竹材改性的一种方式,能够有效地改善竹材的材性,提高竹产品的品质与利用率。本文以竹材疏解的竹束为单元,以重组竹的制造工艺,探究热处理工艺和前驱体溶液浓度对于Fe3O4/竹重组材性能的影响。竹束单元在180℃的饱和蒸汽下热处理10 min、20min、30 min、40 min、50 min,探究热处理时间对于Fe3O
本文围绕木质素对纤维素酶水解的抑制作用,开展酸性预处理阔叶材与针叶材中残留木质素对纤维素酶水解差异性影响的研究,以及预处理强度对残留木质素的理化性质、化学结构及其酶水解抑制作用的影响研究,以揭示酸性预处理木本原料残留木质素对纤维素酶水解抑制作用的构效关系。在此基础上,提出基于木质素原位修饰的酸-碱联合预处理技术,以提高稀酸预处理针叶材的纤维素酶水解性能。研究结果可为建立有效的木本原料预处理方法提供
非结构性碳水化合物(NSC,Non-structural carbohydrate)在树木各器官间的分布格局和动态变化,表征了树木阶段性的碳供应状态。通过对个体及林分水平NSC库的量化,有助于评估树木的固碳潜力及其环境适应性。本研究以苏北地区杨树人工林为研究对象,林分栽种方式为不同密度与种植点配置嵌套(高密度400株/hm2:3.0m×8.0m、5.0m×5.0m;低密度278株/hm2:4.5m
微流控芯片的设计与制造高度融合了生物粒子操控以及微纳先进制造技术,在快速检测医疗设备的研发方面有广泛的医疗应用前景。近年来,由于其具有样品体积小,通量高,控制简单等优点,微流控技术已成为粒子/细胞聚焦和分选的重要手段。其中,黏弹性微流控技术更易实现粒子的三维单线聚焦且能操控粒子的粒径尺度跨度大、工作流量范围广,已成为粒子/细胞处理的新趋势,受到越来越多的关注。为了解黏弹性流中粒子黏弹性-惯性迁移机
生物碱是一类极其重要的含氮杂环有机物,很多具有广泛的生物活性。在众多生物碱中,吲哚类生物碱因其来源广泛和具有良好生物活性而成为研究的热点。同时,吲哚类生物碱也是天然产物和药物分子中常见的结构单元,很多含有吲哚结构单元的化合物显示出广泛的生物活性如抗癌、抗菌和抗炎等。其中,双吲哚类化合物在医药、农药和材料等众多领域应用广泛,很多含有双吲哚结构的化合物显示出一系列独特的生物活性。另一方面,氟原子具有电
为了明晰不同树种组成对土壤活性碳组分与碳储量的影响程度,本研究以江苏省宜兴市周铁镇立地条件和林龄相同的杨树(Populus euramericana)纯林、杨树女贞(Ligustrum lucidum)混交林及杨树石楠(Photinia serrulata)混交林3种林分类型为研究对象,测定了土壤活性碳组分含量、土壤碳储量在不同季节和不同土层(0~20 cm、20~40 cm和40~60cm)的变
近年来,随着全球气候变暖和能源问题的日益严重,加速开发清洁能源并实现可持续能源的高效转换及存储成为当务之急。氧还原反应(ORR)、氮还原反应(NRR)以及加氢去氧反应(HDO)分别是燃料电池、合成氨技术及木质素转化增值过程中的关键反应,这些催化反应效率的提升对于缓解环境污染和能源短缺具有重要意义。开发高效、耐用且低成本的新型催化剂将会加快可再生能源取代化石燃料的步伐。在本论文的研究中,我们基于密度
提升农村居民的居住环境,建设秀丽宜居的农村,这不仅是我国在实现乡村振兴战略的重要课题,人居环境改善还关系到我国在建设的小康社会的质量和文明和谐的农村社会的构建的效果,是惠及农村最基本的福祉所在。根据研究现状看来,学者们近些年来也将目光投向乡村人居环境治理上,但是在农村人居环境的案例的细致分析与深入描述上,仍旧缺乏更加深入的调查,更需要了解当前人居环境治理的现实问题。由于人居环境治理是一个涉及到较多