量子网络系统中的相干输运和单光子集体性动力学研究

来源 :中国工程物理研究院 | 被引量 : 1次 | 上传用户:dongxiaohu123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着量子计算和量子信息技术的发展,越来越多的人开始关注对微观量子态的操作和调控问题。光子作为电磁场量子化的能量实体,与电磁环境没有直接的相互作用,已经成为量子信息载体的理想候选者。相比于其它有质量的微观粒子,光子在应用上具有速度快、容量大、抗干扰能力强和保密性好等优点。近些年,通过利用光子与物质之间的有效相互作用来实现对光子态的操控已经成为量子物理中的重要发展方向。研究表明,将量子发射器放入到受限空间中,光子与发射器之间的相互作用可以明显地增加,由此发展而来的腔电动力学和波导电动力学现在已经变成了量子光学中的两个重要分支。在波导电动力学中,光子可以沿着波导进行传播,根据量子力学原理,在波导中的光子会发生退相干现象。目前实验上已经实现了多种不同类型的高品质波导,例如光子晶体波导、超导传输线波导、纳米光纤、表面等离子体波导等,这为光子的长距离传输提供了良好的平台。在这些不同类型的波导系统中,耦合腔阵列波导由于其丰富的物理现象和能谱结构逐渐引起了人们的广泛关注。对耦合腔阵列系统中的光开关效应、动力学问题、束缚态问题、相干的量子输运问题等的研究不仅能够帮助人们了解和掌握这个系统中的量子性质,还能够帮助设计出在量子信息处理中所需要的量子器件和量子网络。在第一章中,我们简单介绍了光子的量子化发展过程和光子在受限波导中与量子发射器发生耦合的发展状况以及该系统的物理实现。在第二章中,我们研究了耦合腔波导与二能级量子发射器耦合的系统,分析了一维和二维耦合腔阵列中单光子态的相干输运问题。在第三章中,我们研究了一维耦合腔波导与三能级量子发射器耦合的系统,对其中的束缚态和自发辐射问题进行了计算和讨论。在第四章中,我们研究了一维耦合腔波导与量子发射器系综相耦合的系统,对其中的能级结构和单光子集体性动力学问题进行了分析和讨论。在第五章中,我们分析了一般玻色场与原子集合耦合的系统,对其中的束缚态和dark态在单光子集体性动力学中引起的囚禁效应进行了分析和讨论。在最后一章中,我们对全文的内容进行了总结,并且对接下来可能的工作做出一些展望。
其他文献
冲击加载下金属材料的塑性变形是物理学、力学与材料学等多个学科领域共同关注的基础科学问题,相关研究在航天航空、汽车工业以及武器研制等领域具有重要的应用价值。从根源上来看,材料的塑性变形是微介观尺度位错等缺陷被外加载荷激活并随时空演化的结果。冲击加载下材料的塑性变形是一个超快动力学过程,变形过程不仅涉及位错等缺陷的大量生成与演化,还涉及应力的急剧增加与松弛。要深入认识这样一个超快动力学过程,需要与之匹
真空弧放电产生的离子种类多,离子电荷态高,而且引出离子流强大,所以广泛应用在镀膜沉积、离子注入、强流离子加速器等领域。特别地,金属氘化物阴极真空弧放电可以提供强流氘离子束,常用作密封中子管离子源,用来产生高产额中子,在石油探井、中子活化分析、无损检测等领域有重要应用。尽管真空弧放电在工业上应用广泛,而且研究已有一百多年的历史了,但直到现在,真空弧放电过程还没有被完全理解。而且研究人员的关注点基本都
学位
在聚变堆结构材料表面制备阻氚涂层是降低氚渗透造成的材料损伤以及放射性危害,维持氘氚燃料自持循环的有效途径之一。钒合金具有优良的高温力学性能和低活化特性,是聚变堆中候选的结构材料,但氢同位素在其中的渗透率远高于其他候选结构材料(RAFM钢、SiCf/SiC复合材料),并易形成氢化物。采用“基体渗铝+氧化”制备的以富Al合金为过渡层、Al2O3膜为外层的铝化物阻氚涂层体系具有化学性能稳定、自修复能力强
铀及其合金材料在核能和国防工业领域中有重要的应用。金属铀具有很高的化学活性,在氢气氛环境中易发生氢化腐蚀。铀的氢腐蚀是一种特殊的点状腐蚀,氢腐蚀表面破裂,导致材料表面完整性缺失和力学性能降低。另外,氢腐蚀反应产物极易自燃,氢化物粉末往往会形成放射性气溶胶并污染环境。铀及铀合金的氢化腐蚀被认为是工程应用中的重要危害之一,因此,无论是从工程应用还是基础研究层面考虑,关于铀的氢腐蚀行为、机制和影响因素的
在强激光与物质相互作用过程中,通过烧蚀过程可以驱动一个向内传播的压缩波,控制激光驱动波形,可以实现强冲击加载或准等熵加载等多种压缩方式,这使得大型激光装置成为一种极具潜力的材料压缩特性实验研究平台。然而,要在激光装置上开展材料压缩特性研究,除了建立高压材料加载方法之外,还需要发展相应的材料压缩及热力学状态参数诊断方法。扩展X射线吸收精细结构谱技术(Extended X-ray Absorption
在处理光学信号与信息的过程中,非互易性器件由于其可以对光进行单向控制的特性而发挥着极其重要的作用。近年来,基于光腔与原子、机械振子耦合的腔混合系统在量子信息处理、构建可控量子网络以及精密测量等多领域也表现优异。因此,本文将主要研究利用腔混合系统实现光学非互易传输。我们首先考虑原子系综与光腔耦合的非线性系统。通过利用原子系综增强与光腔耦合的非线性相互作用,实现高隔离率的强光信号光学隔离器。我们发现原
不可压Navier-Stokes方程具有广泛的应用,其数值求解一直备受关注,尤其是具有复杂流动区域的问题。本文从偏微分方程和数值方法两个方面研究了一类求解不可压Navier-Stokes方程的向量型动理学BGK(Bhatnagar-Gross-Krook)模型,我们还研究了相应数值方法的边界处理,并讨论了它们的精度和稳定性。本文包含以下五个方面的内容:第一、从偏微分方程的角度,我们证明了一类离散速
温稠密物质广泛存在于行星内核及惯性约束聚变的内爆路径中,温稠密物质的物性参数对于理解行星内部磁场的产生以及惯性约束聚变的靶设计具有重要的意义。温稠密物质中的金属-非金属转变是极端条件下材料物性研究中的重要科学问题,而直流电导率是判断温稠密物质中金属-非金属转变是否发生的最直接依据。当前对于温稠密物质中的直流电导率往往是通过测量光学反射率结合Drude模型获得,但在金属-非金属过渡区由于传导电子的局
动态载荷下凝聚介质的动态响应过程是涉及凝聚态物理学、冲击动力学和材料科学等多个学科领域的重要研究课题。其中,材料的冲击相变是多年来备受关注的冲击波领域的研究难题。冲击相变现象的发生,使其动态响应变得更为复杂。铈(cerium,Ce)是一种稀土金属元素,其在不同的温度、压力条件下存在多种结构相,具有丰富的相变行为。其中在室温、约0.7 GPa压力条件下的α-γ一阶同构相变最吸引研究者关注,两相的晶体