镁基储氢材料制备与床体服役工况动态热导率研究

来源 :北京有色金属研究总院 | 被引量 : 0次 | 上传用户:deepseaxing2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
缺乏安全高效的氢储运技术是制约氢能大规模商业化应用的关键环节之一,高容量固态储氢材料是解决这一问题的有效手段。镁基储氢材料因具有储氢容量高、资源丰富、价格低廉等优点而成为最具吸引力的储氢材料之一,但由于镁基储氢材料的吸/放氢反应热焓大、粉体导热性能差,亟需提高床体的能质传递性能以满足应用需要。目前镁基储氢材料床能质传递性能计算模型均将镁基储氢材料床的有效热导率简化为常数而忽略其在工况条件(氢压、温度、氢含量)下的显著变化,导致模拟计算与实际能质传递性能出现较大偏差,影响模型计算的准确性。因此,亟需系统研究镁基储氢材料床体有效热导率随氢压、温度和氢含量等工况参数的变化规律,为床体传热传质优化研究提供数据支撑。基于以上问题,我们首先通过机械球磨法优化出兼具高储氢容量和良好动力学性能的Mg/Ti-Cr-V复合储氢材料作为研究对象。采用X射线衍射(XRD)、扫描电镜(SEM)和激光粒度仪对复合材料物相组成、显微形貌和颗粒粒度分布进行表征,采用Sievert’s体积法测定复合材料的吸/放氢动力学性能。将氢化态Mg/Ti-Cr-V复合储氢材料(MH)与一定比例的膨胀石墨(EG)混合,采用单轴模压法制备MH/EG床体模块探究膨胀石墨添加量和成型压力对MH/EG床体模块性能的影响。采用瞬态平面热源法成功搭建了动态热导率测试平台,研究了不同氢压、温度、氢含量等工况参数对床体模块热导率的影响,拟合获得了床体模块热导率与温度、氢压和氢含量等服役条件关系的经验公式,并分析了相应的机理,为固态储氢装置传热传质性能的设计计算提供了重要的基础数据。采用原位氢化反应球磨法制备了 Mg-x wt%Ti0.16Cr0.24V0.6复合储氢材料(x=0、3、5、10)。结果表明,Mg-3 wt%Ti0.16Cr0.24V0.6复合储氢材料具有最优异的储氢容量和较好的动力学性能,在300℃时,其对0.1 MPa氢压,80 min内的放氢容量达7.08 wt%,对 2 MPa 氢压,30 min 内的再吸氢容量达 6.95 wt%。对 Mg-3 wt%Ti0.16Cr0.24V0.6 复合储氢材料通过放大实验实现200g级的批量制备,优化出的球磨工艺条件为:球料比20:1,φ10和φ7不锈钢磨球的数量比为1:3,正向球磨30 min暂停5 min反向球磨30 min,转速500r/min。批量制备的复合储氢材料具有良好的动力学性能以及物相、粒度和微观形貌的一致性。为了探究成型工艺对镁基复合储氢材料床体模块的影响,通过单轴模压分别在固定成型压力为273 MPa下制备了膨胀石墨添加量分别为0 wt%、5 wt%、10 wt%、15 wt%、20wt%和固定膨胀石墨添加量为10 wt%,成型压力分别为39MPa、117MPa、195 MPa、273 MPa和351 MPa的MH/EG床体模块。结果表明,提高膨胀石墨添加量会导致其在床体模块中形成更明显的网格化结构,使MH/EG床体模块的热导率和表观密度提高,氢渗透率和质量储氢容量降低,对孔隙率基本没有影响,并且添加10 wt%膨胀石墨制备的床体模块在牺牲部分储氢容量的同时具有较理想的热导率和吸/放氢速度。提高成型压力会导致MH/EG床体模块具有更高的压实密度和更明显的膨胀石墨层片状趋势,使MH/EG床体模块的热导率和表观密度提高,孔隙率和氢渗透率降低,对质量储氢容量和动力学没有显著影响,并且在351 MPa下成型的床体模块在保证放/吸氢速度的基础上具有最高的热导率。选取Mg-3 wt%Ti0.16Cr0.24V0.6/10 wt%EG(MH/EG)床体模块为研究对象,系统测定了其在不同气氛、氢压、温度和氢含量下的热导率。结果表明,MH/EG床体模块在氢气气氛中具有较高的热导率,且热导率随压力的提高呈对数增大的趋势。这是因为温度和气体类型不变时,随着压力逐渐增大,氢气分子平均自由程开始减小,气体分子之间碰撞加剧,粒子间的能量交换与气体分子的浓度和填充气体的热导率成正比。MH/EG床体模块的热导率随温度的升高呈线性减小趋势。这是因为随着温度提高,MgH2晶格中平均声子数增大,声子间碰撞频率提高,自由程降低,导致MgH2晶体的热导率随着温度的提高而降低。MH/EG床体模块放氢时热导率随氢含量呈现“S”型变化趋势。床体模块开始放氢后,热导率先略微提高,当放氢量达到3 wt%左右时,热导率显著增大,接近放氢结束时,热导率基本不变。同时,床体模块在相同的氢含量时热导率随温度升高呈现降低趋势。这是因为放氢时基体中的MgH2颗粒逐渐转变为金属镁颗粒,同时以自由电子导热形式的金属镁相较于以晶格传热形式的MgH2具有更高的热导率,并且金属Mg颗粒在高温下可能发生局部烧结。拟合得到床体模块热导率随温度和氢压以及氢含量变化的经验公式,将为固态储氢装置传热传质性能的设计计算提供了重要的基础数据,高容量镁基床体模块的原位热导率测试将为今后研究提供重要参考。
其他文献
与传统镁合金相比,稀土镁合金以其高强度、高耐蚀性等优点受到青睐。研究表明,在稀土镁合金中引入LPSO相,有助于稀土镁合金塑性加工性能的提升。针对含有LPSO相的稀土镁合金,已有很多学者做出了研究,但是在镁合金制备加工过程中各个状态下LPSO相的结构演变仍存在争论,其塑性变形机制也尚不明确。本文选取Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=1,1.5,2)合金(1Zn、1.5Zn、2Zn合
现阶段航空器结构件对钛合金高强高韧力学性能的要求越来越严苛,所以高强高韧钛合金的相关研究一直备受人们的关注。而本文的研究对象为一种新型的亚稳β钛合金,目前对其研究不足,包括其相变过程的研究以及大棒材的热处理,组织、性能关系等,因此对其进一步的研究就显得尤为重要。本文系统研究了该合金在β相区固溶时的晶粒长大动力学,等温时效过程中的组织演变规律、时效硬化特性及相变动力学,并对单相区和两相区固溶时效后的
随着常规油气资源的不断开发与耗竭,页岩油气等非常规能源将成为未来能源的重要接替者。水平井分段压裂技术是国内外开采这类油气资源较成熟的技术,桥塞是该技术中的重要组成部分,可溶性桥塞由于其可自行溶解、增加工作效率等优势已成为现在的研究热点。新型可溶性桥塞除了胀管为可溶性橡胶材料外,其余均为镁合金制成;可溶性橡胶材料不仅溶解较慢,容易造成二次堵塞,而且胀管在桥塞工作过程中容易发生回弹而封隔失效;如果用镁
在镁中添加Gd、Y等稀土元素后,可以获得优异的力学性能以及较好的耐腐蚀特性的镁合金,是目前航空航天、军工等领域的重要轻量化材料。传统稀土镁合金在强度提高的同时,塑性相对较低,很难制备出军工领域重要的大轴径比锥筒零部件。研究发现Zn元素的加入可以在稀土镁合金中形成长周期有序堆垛结构相,塑性加工能力得到改善,本身塑韧性也会显著提升。目前关于该类稀土镁合金塑性成形研究相对有限,为了能够进一步扩大稀土镁合
红外热像法是一种基于能量耗散理论的疲劳测试新方法。这种方法具有快速、无损、实时等诸多优点,与传统疲劳测试方法相比具有极大的优势。同时,红外热像法从热力学角度出发,研究能量耗散与材料微观组织演化的关系,为探究金属材料疲劳断裂机理提供了新的手段,在工程设计与应用及新材料研究开发中均有着广阔的应用前景。本文探究了外部热源、热弹性、热传导、固有耗散对红外热像法实验结果的影响,发现固有耗散源是引起试样表面温
TiZrV合金是目前工程应用中常见的一类低温激活吸气材料,为更好满足高端真空器件的需求,需要进一步降低激活温度,提高吸气性能。本论文选择Cr、Fe、Al、Mn元素对Ti40Zr30V30(at.%)吸气剂进行了成分优化,并探讨了材料成分变化对其微观结构和吸氢性能的影响。具体研究内容与结论如下:1.利用Cr、Fe、Al、Mn元素优化Ti40Zr30V30合金的成分,以期改善合金的微观结构和吸氢性能。
航空航天、国防军工等领域中的部分装备器件需满足轻量化、强度高、耐热性能良好的要求,同时还需要具有良好的阻热性能。目前应用的高强耐热镁合金已满足前三点要求,但其自身的阻热性能一般,往往需要通过涂覆热障涂层来提高其阻热性能,而热障涂层不仅不满足轻量化的要求,且存在涂层的开裂、脱落以及成本高昂等问题。基于此,亟需开发具有优良本征阻热性能的镁合金。本文选取Gd、Tb、Dy和Yb四种稀土元素为合金添加元素,
AlSn20Cu合金具有良好的减摩耐磨性、嵌藏性、顺应性和抗腐蚀性,在滑动轴承减摩溅射镀层有广泛的应用。性能良好的镀层要求溅射AlSn20Cu合金靶材组织均匀,β-Sn相细小弥散分布。本文以喷射成形AlSn20Cu合金为研究对象,通过等温单道次热压缩实验研究了热变形条件对合金组织的影响,优化了合金热加工工艺;在优化的基础上进行轧制和退火实验,研究了轧制及退火对合金组织的影响;对制备的靶材进行磁控溅
真空器件中的气体环境控制对维持其高寿命、高可靠性、高精度的具有重要意义。采用吸气剂吸收活性气体可以有效地维持器件内部真空状态,本文通过进行材料微成分、微结构优化,提升吸气剂在复杂气氛环境下的适用性,实现真空器件内微量气体的选择性控制。本文采用定压法对Ti-Mo、ZrVFe与TiZrV三种常用吸气材料的气体选择性吸收性能进行分析,选择化学镀对Ti-Mo粉体进行表面改性,经粉末冶金压制和热处理烧结工艺
2195铝锂合金作为典型的第三代铝锂合金,具有密度低、比刚度高、低温力学性能好和耐腐蚀等优点,被广泛应用于航天飞行器等轻质结构件的制造。本文以2195合金板材为研究对象,系统研究了完全退火和T8热处理对合金板材力学性能和显微组织的影响规律,确定了可实现2195合金板材最优力学性能的完全退火和T8热处理制度,为2195合金完全退火态和T8热处理态板材的工业生产工艺优化提供理论支撑和参考依据。主要研究