啤酒糖化过程大麦麦芽阿拉伯木聚糖的降解

来源 :江南大学 | 被引量 : 1次 | 上传用户:zmy_java
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大麦胚乳细胞壁的主要组分为β-葡聚糖和阿拉伯木聚糖,其中β-葡聚糖一直被认为是啤酒酿造过程中堵塞过滤介质的主要物质。目前,β-葡聚糖在大麦麦芽、麦汁和啤酒中的含量均较低,其对粘度和过滤速度的影响已消除。最新研究表明,当β-葡聚糖含量很低时,阿拉伯木聚糖对过滤具有同样的负面影响。本研究建立了分子筛层析法测定大麦麦芽阿拉伯木聚糖分子量大小和分布的方法,采用Pearson法分析了各分子量阿拉伯木聚糖含量与过滤速度和粘度的相关性,建立了表征影响过滤速度和粘度的多聚阿拉伯木聚糖含量的新指标——PWEAX50;研究了糖化过程中工艺参数、麦芽内源木聚糖酶和外源微生物木聚糖酶对PWEAX50含量的影响;采用2-DE分析了降解PWEAX50效果最好的微生物木聚糖酶蛋白组成,并对其中的关键单酶进行了纯化和性质研究,最后对微生物分泌关键单酶的发酵工艺参数和培养基组成进行了优化。研究对阐释啤酒糖化过程阿拉伯木聚糖的降解机理、提高啤酒生产效率及完善糖化用酶的复配策略均有指导意义。主要研究结果如下:(1)建立了分子筛层析法测定阿拉伯木聚糖的分子量大小和分布。采用80%(v?v-1)乙醇沉淀协定麦汁中的阿拉伯木聚糖,重新溶解后取8 mL上样于Sepharose CL-6B分子筛层析柱,以100 mL?h-1的流速,采用0.05 mol?L-1的NaCl溶液进行洗脱。采用Douglas法测定各管中阿拉伯木聚糖的含量,根据标准曲线计算阿拉伯木聚糖的分子量大小和分布。采用建立的分子筛层析法分析了大麦麦芽中分子量>1000 kDa、500~1000 kDa、50~500 kDa及<50 kDa的β-葡聚糖和阿拉伯木聚糖的含量。Pearson相关性分析表明,分子量>1000 kDa的β-葡聚糖含量与麦汁粘度极显著相关(p<0.01),与过滤速度没有相关性(p>0.05)。将分子量>50 kDa的阿拉伯木聚糖含量的总和定义为PWEAX50。PWEAX50与过滤速度极显著负相关,与粘度极显著正相关。与其他方法测定的阿拉伯木聚糖含量相比,PWEAX50的显著性水平和相关系数均最高,能更准确地反映影响协定麦汁粘度和过滤速度的高分子量阿拉伯木聚糖含量。较大的分子量、较高的浓度及分子结构中较高的侧链取代程度(A/X值)是PWEAX50造成麦汁粘度高和过滤速度慢的原因。采用SPSS19.0线性回归法分析了协定糖化麦汁的过滤速度与PWEAX50含量之间的关系,构建反映二者之间关系的一元线性方程:V30=485-0.852×PWEAX50含量。将协定麦汁中PWEAX50含量控制在≤334 mg?L-1的范围内,可控制大麦麦芽协定麦汁的过滤速度V30≥200 mL,避免对麦汁的粘度和过滤速度产生负面影响。(2)糖化过程中,糖化温度和时间对醪液中PWEAX50含量影响较小。当温度为45℃和55℃时,PWEAX50含量随时间延长基本保持不变;在65℃和75℃保温时,PWEAX50的含量随时间延长略有上升,但上升幅度不大。以PWEAX50为底物时,在pH4.5~6.0、温度45~75℃的范围内,大麦麦芽内源木聚糖酶X-Ⅰ均具有活力,说明在糖化醪液的环境条件下,X-Ⅰ的活力受到了抑制。(3)采用pH5.5、100 mmol?L-1的乙酸——乙酸钠缓冲溶液提取大麦水溶性蛋白,并采用离子交换层析及分子筛层析纯化,得到一种内源木聚糖酶X-Ⅰ的抑制蛋白。该蛋白经基质辅助激光解吸/电离飞行时间质谱鉴定为大麦α-淀粉酶/枯草芽孢杆菌蛋白酶抑制蛋白(barleyα-amylase/subtilisin inhibitor,BASI)。BASI的氨基酸序列与目前文献中已报道的HVXI和XIP、TAXI和TLXI均没有相似性,是一种新发现的木聚糖酶抑制蛋白。当摩尔比为2.75:1,反应时间为20 min,p H值为6.0,温度为50℃时抑制活力较高。BASI在糖化温度和pH范围内对X-Ⅰ均具有较强的抑制作用,是糖化过程PWEAX50未被降解的主要原因。在X-Ⅰ与底物的反应体系中添加BASI后,Km值增大,Vmax值不变,表明BASI是X-Ⅰ的竞争型抑制剂。(4)底物特异性和对BASI抑制活力的敏感程度是影响糖化过程中微生物木聚酶降解PWEAX50的主要因素。将14种微生物木聚糖酶以25 U?g-1麦芽的量外加到大麦麦芽的糖化醪液中,添加2#,4#,6#,11#和12#木聚糖酶后,麦汁中SAX含量均上升,麦汁中PWEAX50的含量呈现相同的变化趋势,说明这5种微生物木聚糖酶主要是作用于麦芽中的WUAX,添加3#,7#,和14#木聚糖酶的糖化麦汁中的PWEAX50和SAX含量以及粘度和过滤速度等指标均变化较小,BASI的抑制作用导致它们无法发挥催化作用;1#,5#,8#,9#,10#和13#木聚糖酶均具有一定的降解PWEAX50的能力,对降低麦汁粘度和提高过滤速度均有一定的效果,其中来源于里氏木霉CICC41495的8#木聚糖酶能将麦汁中PWEAX50完全降解,粘度降低了11.8%,过滤速度提高了93%。酶活分析及双向电泳(2-DE)结合基质辅助激光解析电离串联飞行时间质谱分析表明,里氏木霉CICC41495分泌的胞外酶中有完整的木聚糖降解酶系,主要包括内切-1,4-β-木聚糖酶Ⅰ,Ⅱ,Ⅲ(XYNⅠ,Ⅱ,Ⅲ)和α-L-阿拉伯糖呋喃糖苷酶(TrAbf62A)。采用硫酸铵盐析、离子交换和分子筛层析,从8#木聚糖酶中纯化得到XYNⅠ,Ⅱ,Ⅲ,其中XYNⅢ属于GH10家族,其分子量为32.0 kDa,等电点为9.0,对BASI的抑制活力敏感度低,最适pH和温度分别为5.5和55℃,活力受Zn2+、Cu2+、Fe3+和SDS抑制,对PWEAX50具有底物特异性,能将PWEAX50水解成木糖和木二糖、木三糖等木寡糖,是里氏木霉CICC41495分泌的阿拉伯木聚糖降解酶系中降解PWEAX50的关键单酶;其与TrAbf62A在降解PWEAX50时有较强的协同效应:TrAbf62A单独处理2 h,接着加入XYNⅢ反应2 h后,协同效应达到162%。(5)对降解PWEAX50的关键单酶——XYNⅢ的发酵工艺条件进行了研究,结果表明,当培养基的起始pH5.0,培养温度30℃,接种量10%,吐温80添加量为0.2%,装液量为250mL三角瓶装50 mL培养基,摇床转速180 r?min-1,培养168 h时,发酵液中XYNⅢ活力较高。培养基组分中,碳源和氮源对里氏木霉CICC41495分泌XYNⅢ影响最大,采用Box-Benhnken中心组合实验设计法优化了培养基中对XYNⅢ分泌有较大影响的组分——玉米芯、麸皮、酵母粉和硫酸铵的浓度,结果表明,当玉米芯的浓度为42.17 g?L-1,麸皮浓度为30.50 g?L-1,酵母粉浓度为3.75 g?L-1,XYNⅢ活力达到281U?mL-1,优化后,发酵液中XYNⅢ活力提高了406%。
其他文献
近年来我国食品安全事件频发,给消费者的身心健康、食品行业的信誉和食品安全监管体系的权威造成了巨大损害。为了应对食品安全事件,我国逐渐建立和完善了以食品安全事件应急
随着各种新型业务不断的涌现,设备数目与数据流量激增,给第五代移动通信(The Fifth Generation Mobile Communications,5G)网络带来了巨大的挑战。为了提高5G系统的容量,超密
随着电动汽车数量的快速增长,电动汽车电池退役后的出路问题成为了社会各界关注的焦点。动力锂离子电池从电动汽车上退役后,仍具有约70-80%的容量,将退役电池应用在其他性能
从制备到应用,温度变化贯穿薄膜的整个生命周期,薄膜与基底热力学性能不匹配容易在温度变化过程中导致薄膜失效。特别是在特定高温环境和低温环境下的薄膜应用,如飞行中导弹
甾体雌激素雌酮(E1)和17β-雌二醇(E2)和17α-乙炔基雌二醇(EE2)是一类公认的高风险的内分泌干扰物,在ng/L浓度水平就能够引起水生生物体异常,因此其去除研究受到了广泛的关注。吸
夸克模型把强子按夸克成分归类为包含三个夸克的重子和包含一对正反夸克的介子。事实上,量子色动力学也允许超出上述分类的其它强子态的存在,比如多夸克态、分子态、胶球以及
多环芳烃(polycyclic aromatic hydrocarbon,PAHs)是一类具有“三致”作用的持久性有机化学污染物,实现土壤PAHs现场快速检测,对于土壤污染分布调查、污染场地治理修复、污染
功能化纳米颗粒,如脂质体和胞外囊泡,是纳米医学和纳米生物学的重要研究内容。研究表明,功能化纳米颗粒携带的生物分子信息、形态特征与其功能和生物来源都有紧密联系。然而,
高比能量锂离子电池正/负电极材料的制备、改性和基础工艺研究有助于推动高比能量锂离子电池产品、新能源电动汽车及大规模储能等领域的产业化应用。本论文研究了可应用于高
研究目的1.开发适用于宫颈癌患者的症状评估量表。2.基于经典测量理论和项目反应理论评估“宫颈癌患者治疗期症状评估量表”的信效度。3.调查宫颈癌患者放疗期间的症状,并提