锂离子电池低温预热方法及安全预警策略研究

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:zzjqwerty6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
能源安全与环境保护已经成为21世纪人类面临的最重要问题,新能源由于具有低碳环保的优点,作为能源问题的解决方案被提出。近年来新能源汽车的快速发展和新能源发电站的并网运行都证明了新能源的广阔发展前景。新能源的使用离不开储能元件。锂离子电池由于具有高能量密度、高功率密度被广泛用作新能源汽车和新能源储能电站的储能元件。但随之而来的锂离子电池的安全性问题很大程度上制约了新能源的进一步发展。近年来发生的电动汽车自燃事故和储能系统的失火事故都证明锂离子电池的安全问题仍待进一步研究和解决。而锂离子电池安全事故发生的一个关键原因是锂离子电池在低温下使用,尤其是低温充电使用过程中产生的析锂问题及锂枝晶刺穿隔膜导致的内短路问题。所以,本文从锂离子电池的低温预热策略研究入手,通过锂离子电池在使用前加热预防低温使用可能造成的安全隐患。进一步结合锂离子电池的内短路等效替代实验,对锂离子电池运行时基于内短路辨识的安全预警策略进行了研究。
  首先,针对锂离子电池脉冲加热策略进行了研究。基于电化学阻抗谱建立了锂离子电池在不同温度下的等效电路模型。并基于该模型制定出一种能够抑制电池容量衰减的加热策略。通过加热循环实验及设置对照实验的方式验证了该策略在加热速率和抑制加热过程容量衰减方面的有效性。
  其次,采用基于等效电阻的内短路替代实验方法,进行了不同短路内阻量级的单体电池及模组电池的内短路等效替代实验,对电池内短路故障的特征参数进行了获取。
  最后,结合内短路等效替代实验结果对基于内短路辨识的锂离子电池安全预警策略进行研究。制定出一种能够适用于不同内短路等效内阻级别的综合预警算法。并通过实验结果验证了该预警算法的有效性。
  
其他文献
电力电子技术的高速发展令电力电子器件获得了响应迅速、功率低等优点,但与此同时给电网带来了大量的谐波。我国正处于伟大复兴的阶段,对绿色、清洁的能源需求也日益升高。有源滤波器因其良好的滤波功能、优秀的动态响应被广泛研究和应用于电网滤波中。其中逆变主电路作为有源滤波器的重要组成部分,因其中的电力电子器件经常处于高温高频的工作状态容易发生故障,及时判断故障位置,并在故障状态下可以容错运行是有重大的研究意义
随着高性能永磁材料的发展,永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)在工业以及日常生活领域得到了广泛的应用。为了提高永磁同步电机矢量控制系统的性能,需要实时监测电机转子位置与转速,传统控制方案中需要通过传感器获取转子位置及转速,传感器易受到周围工作环境的影响,从而导致控制系统的性能以及精度下降,同时传感器的存在又增加了永磁同步电机的体积与成本,因
LED灯具在照明领域得到了广泛的使用。然而LED灯具的频闪会损伤眼部光学系统,造成视觉疲劳、偏头痛、近视加剧等诸多问题也引起了人们的关注,LED灯具中最重要的核心部件是LED驱动电源,也是最为脆弱的部分。可见研究无频闪、高功率因数、高效率的LED驱动电源具有重要的意义。针对这些问题提出了一种采用新型氮化镓功率器件,基于无桥PFC拓扑与LLC半桥谐振拓扑的高功率因数无频闪LED驱动电源。本文首先研究
当今世界随着人们对能源消耗的日益增加,同时由于煤、石油和天然气逐渐减少且不可再生,因此对于可再生的新能源的需求就大大增加。风能作为全球储存量最大的新能源之一,利用起来最为方便,且发展极为迅速,逐渐登上新能源舞台。当前对风能的利用主要是利用其发电,由于双馈感应电机(Double-Fed Induction Generation,DFIG)可以做到变速恒频的方式发电,大大增强了发电质量成为主流风力发电
永磁同步电动机具有效率高、功率密度高、重量轻、免维护和体积小等优势,广泛应用在工业中,特别是在伺服系统中,正逐步取代感应电机和直流电机。在对永磁同步电机进行控制时,通常采用传感器来获取电机的位置和转速,但是传感器的存在对控制系统有诸多限制,因此本文提出基于容积卡尔曼滤波观测器的无速度传感器的控制方法解决传感器带来的诸多问题,提高电机控制系统的动态性能。本文对永磁同步电机的物理模型和运行特性进行分析
随着工业文明的进步,永磁同步电机(PMSM)作为机电能量转换最为重要的一环,受到了广泛的关注。由于传统的三相电机无法满足对功率密度或容错性能要求较高的场合,多相电机具有更加明显的优势。在空间矢量调制下,不可避免地会产生高频的共模电压脉冲,进而形成轴电流流过电机绝缘或者电机轴承,影响电机使用寿命;而电机位置传感器会增加电机控制系统体积和成本,并无法在恶劣环境下工作的问题也亟待解决。为此,本文提出一种
电力电子技术的飞速发展与不断进步,使得大功率交流传动系统成为了当今工业生产的热点。传统的三相电机因其本身在工业生产方面存在的诸多限制,已无法满足实际要求。而多相电机有着传统三相电机所无法拥有的可靠性强、输出功率大等的优势,在大功率交流传动的工业生产和自动化行业能够满足其需求。因此本文围绕中性点隔离的双Y移30°六相永磁同步电机展开系统研究。论文首先通过对比分析了对称的双Y移60°六相永磁同步电机和
整车控制器作为混合动力汽车的大脑,对汽车中发动机系统、电机驱动系统和动力电池系统进行管理与控制,结合相应的控制算法,使车辆达到一个驾驶性能与节能环保的平衡。整车控制器的相关研究,受到国内外学者与企业的关注,本文将围绕整车控制器设计及其控制策略进行研究。本文首先介绍混合动力汽车及其控制器的研究现状和整车控制策略的研究现状,对等效消耗最小策略和自适应等效消耗最小策略这两种不同的控制方式进行深入研究,通
随着交通运输业的飞速发展,随之而来的是能源的过度消耗与严重的环境污染问题。新能源汽车的出现给传统交通运输业的发展提供了新的方向,燃料电池汽车由于其零污染、零排放的优点受到了国内外各大汽车厂商的青睐。但是由于燃料电池输出特性“疲软”、输出电压等级低、伏安特性差等原因,传统升压DC-DC变换器难以直接满足燃料电池汽车动力系统的要求。因此,针对燃料电池汽车用DC-DC变换器,开展拓扑结构及控制策略的研究
当前,由传统燃油汽车所造成的环境污染和能源短缺等问题变的日益严峻,人们把目光关注在纯电动汽车领域。纯电动汽车是以电能作为动力源,电机为驱动装置,行驶时不会产生尾气,符合节能减排的要求。但是遭到现有动力电池技术的制约,纯电动汽车推广普及仍有很多窒碍。目前动力电池的存在的短板问题是比功率低、使用寿命短和大电流充放电能力差。超级电容的优势是比功率高且可以承受大电流冲击,与动力电池结合可以相得益彰。本文将
学位