A/O生物膜法处理焦化废水中试研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:SparrowHawk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
论文以山西省临汾市同世达实业有限公司焦化厂废水处理系统气浮设备出水为实验废水水源,在中试规模上研究了生物膜法A<2>/O<2>工艺处理焦化废水的工艺特性和效果。厌氧和缺氧反应器为以陶粒为填料的上流式滤池,第一级好氧反应器为以塑料空心球为填料的生物接触氧化池,第二级好氧反应器为以陶粒为填料的上流式曝气生物滤池。实验中生物膜法A<2>/O<2>工艺系统进水COD浓度多数在1000~2200mg/L范围内,进水NH<,3>-N浓度大部分在200~400mg/L范围内。 对中试系统和各反应器的主要研究结论如下: 1.水解酸化反应器水解酸化菌在填料表面附着能力差,很难直接在填料上形成成熟的生物膜,因而生物膜法水解酸化工艺启动时间较长。在启动期间焦化废水COD和NH<,3>-N浓度的剧烈变化,会影响水解酸化反应器的启动运行。以陶粒为填料的水解酸化反应器从挂膜启动到生物膜成熟约需半年时间。焦化废水水解酸化处理的目的是提高其可生化性,焦化废水中的含氮有机物的比例较大,含氮有机物水解酸化过程会释放出NH<,3>-N。因此从工程上,可以很方便的用水解酸化反应器进出水BOD/COD比值的变化和进出水NH<,3>-N浓度的变化来判断水解酸化反应器挂膜启动成熟程度和运行效果。水解酸化反应器对焦化废水COD和BOD都有一定的去除作用。对于中试的水质条件水解酸化时间以20h为最好。当HRT为20h,进水COD容积负荷为1.61~2.65kgCOD/(m<3>·d)时,在进水BOD/COD比值为0.05~0.17的情况下,出水BOD/COD比值为0.16~0.48,平均提高了175%左右,出水BOD/COD比值最高可提高至0.48,提高了336.4%左右,大大改善了水解酸化反应器出水的可生化性。焦化废水水质浓度变化大,可以用水力停留时间作为水解酸化反应器的设计参数。以陶粒为填料的水解酸化反应器生物量高达8960mg/L,挥发性固体含量(VSS)高达7420mg/L。由于生物量高,以陶粒为填料的水解酸化反应器对进水pH值、温度和进水水质变化有很强的适应性。处理焦化废水水解酸化反应器的优势微生物主要为兼性菌,有芽孢杆菌属、气单胞菌属、黄杆菌属及副球菌属等。以陶粒为填料的水解酸化反应器泥龄长,剩余污泥产率很低,在两年的运行中水解酸化反应器未进行反冲洗,不影响水解酸化反应器的运行效果。 2.缺氧反应器挂膜启动期间由于生物膜尚不完全成熟,反硝化能力差,应采用较小的回流比。缺氧反应器的回流以300%为宜。当回流比为300%时,NO<,3>-N的平均还原率略高于90%。为使反硝化反应正常进行,缺氧反应器的水温必须保持在20℃以上。焦化废水经水解酸化处理后,进入缺氧反应器的废水pH值一般在6~8之间,可以满足缺氧反应器对于pH值的要求。缺氧反硝化对去除焦化废水中COD有重要作用。反硝化菌可以利用一些好氧微生物和厌氧微生物都难以降解的焦化废水中的有机物作碳源进行反硝化。在A<2>/O<2>焦化废水处理工艺中,缺氧反应器的合理设计对保证系统出水COD浓度达标至关重要。只要充分发挥反硝化菌对焦化废水中难降解有机物的缺氧降解作用,对焦化废水缺氧反硝化而言,碳源还是相对充足的,不需要补充外加碳源。缺氧反硝化进水C/N比在5以上就可以基本上满足反硝化对于碳源的需求。由于生物膜法A<2>/O<2>焦化废水处理工艺中,反硝化菌可利用的碳源除水解酸化反应器出水中容易生物降解的有机物外,还需要利用厌氧和好氧作用难于生物降解的有机物和内源碳作碳源。因此,反硝化速率相对于城市污水反硝化要低得多。反硝化反应器的NO<,3>-N容积负荷也相对较低。中试中稳定运行状况下的NO<,3>-N容积负荷不大于0.24kgNO<,3>-N/。缺氧反应器的水力停留时间不小于24h。以陶粒为填料上向流生物膜缺氧反应器中生物量从下到上逐渐减小,平均生物量为4.16g/L,挥发性固体含量为3.24g/L。当填料粒径为3~6mm时,生物膜反硝化反应器由于回流比较大,填料中的上向流速也较大,可以使反硝化产生的氮气自然逸出,不需要考虑释氮循环,也不需要对填料进行定期反冲洗。处理焦化废水缺氧反应器的优势微生物主要为产碱杆菌属、施氏假单胞菌属、黄杆菌属等。尽管二级好氧生物反应器中的溶解氧浓度较高,由于缺氧反应器中水流推流式上升,反应器底部的微生物可以尽快的消耗回流硝化液带到反应器中的溶解氧,大大减少了回流硝化液中溶解氧对反硝化的抑制作用。 3.好氧反应器二级好氧生物反应器曝气生物滤池的启动挂膜应在气温较高的夏天进行,可以缩短挂膜启动的时间;挂膜期间尽量限制NH<,3>-N负荷,二级好氧反应器的进水NH<,3>-N浓度最好不高于60mg/L,防止对还不成熟的硝化菌生物膜产生抑制作用,影响挂膜启动;挂膜期间,可适当增加稀释水,以降低焦化废水中有机物的毒性;挂膜初期最好采用较小的气水比,防止对尚未成熟的生物膜冲刷作用过强。一级好氧反应器对COD有较好的去除效果。焦化废水生物处理时以去除COD为主要功能的一级好氧反应器和以NH<,3>-N硝化为主要功能的二级好氧反应器应该采用较低的容积负荷和较长的水力停留时间,以保证在系统进水不进行稀释的条件下,系统出水COD和NH<,3>-N浓度同时达到国家《污水综合排放标准》(GB8978-1996)中的一级标准。一级好氧反应器生物量(以SS计)为7.44g/L,二级好氧反应器生物量(以SS计)为3.87g/L。活性污泥法单独硝化工艺中MLSS很难超过2g/L,实验中,曝气生物滤池中生物量(以SS计)为3.87g/L,比活性污泥法单独硝化工艺中的MLSS值高得多。由于生物膜法构筑物用于硝化处理时,可以保持较高的生物量,因此,当采用单独硝化工艺时,宜采用生物膜法构筑物。一级好氧反应器主要优势菌为异养菌,主要菌属为芽抱杆菌属、动胶菌属、黄杆菌属、诺卡菌属及产碱杆菌属;二级好氧反应器优势菌为硝化菌,主要菌属为硝化杆菌、硝化球菌、亚硝化单细胞及亚硝化球菌。异养菌为一级好氧反应器的优势菌,亚硝化菌和硝化菌为二级好氧反应器的优势菌。有机物浓度、溶解氧浓度、温度、pH值、碱度等都对二级好氧反应器硝化作用有影响。最佳条件是:溶解氧浓度在5mg/L左右,温度保持在25℃左右,pH值控制在7.0~7.8之间,维持出水碱度在150mg/L以上。二级好氧反应器曝气生物滤池不仅用于去除COD和NH<,3>-N,反应器内的填料还有截留悬浮物的过滤作用,系统经过5个月的运行后才在曝气生物滤池出水检出很低的SS浓度。有利于降低出水中微生物固体的COD量,对降低出水COD浓度有一定作用。焦化废水由于COD和NH<,3>-N浓度都很高,应采用两级好氧工艺。第一级好氧构筑物以去除COD为目标,第二级好氧构筑物以NH<,3>-N硝化为目标。由于去除COD和NH<,3>-N硝化在不同的构筑物中完成,应针对两个不同阶段进行各自优化管理。采用单独的硝化工艺,由于进水中碳源有机物浓度低,易于形成硝化菌为优势菌的生物相。特别是在第一级好氧反应器中,由于生物降解作用大大减少了对二级好氧反应器中硝化菌有害和有毒物质浓度,减轻了对第二级好氧构筑物中硝化菌的抑制和毒性作用,大大提高了硝化构筑物的硝化效率和运行的稳定性。研究结果表明,系统进水COD浓度在1000~2200mg/L范围内,进水NH<,3>-N浓度在200~400mg/L范围内,对系统进水不进行稀释的条件下,水解酸化反应器HRT为20h,缺氧反应器HRT为24h,一级好氧反应器和二级好氧反应器HRT均为48h,二级好氧反应器硝化液回流比为3时,生物膜法厌氧/缺氧/好氧/好氧(A<2>/O<2>)处理出水COD≤100mg/L,NH<,3>-N≤15mg/L,COD和NH<,3>-N浓度可以同时达到《污水综合排放标准》(GB8978-1996)中的一级排放标准。 本研究在焦化废水的生物处理技术上取得如下的创新性成果: (1)提出生物膜法厌氧/缺氧/好氧/好氧(A<2>/O<2>)处理焦化废水工艺。厌氧和缺氧反应器为以陶粒为填料的上流式滤池,第一级好氧反应器为以塑料空心球为填料的生物接触氧化池,第二级好氧反应器为以陶粒为填料的上流式曝气生物滤池。 (2)中试规模研究了生物膜法A<2>/O<2>工艺处理焦化废水的工艺参数,为生产工艺的设计提供了技术参数。 (3)焦化废水经隔油和气浮预处理后,在不对焦化废水进行稀释的条件下,采用生物膜法A<,2>/O<2>工艺,处理出水COD和NH<,3>-N浓度可以同时达到国家《污水综合排放标准》(GB8978-1996)中的一级标准(即COD≤100mg/L,NH<,3>-N≤15mg/L)。 (4)强调了缺氧反硝化在处理流程中对COD去除的重要作用。缺氧反应器的合理设计对保证系统出水COD浓度达标至关重要。只要充分发挥反硝化菌对焦化废水中难降解有机物的缺氧降解作用,对焦化废水缺氧反硝化而言,碳源还是相对充足的,不需要补充外加碳源。研究结果表明,缺氧反硝化进水C/N比在5以上就可以基本上满足反硝化对于碳源的需求。
其他文献
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊