梯度泡沫铝的结构调控及冲击性能研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:ciissyma
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自然界中人体的松质骨可根据应力场进行自适应的调整,形成材料利用效率最优的梯度多孔结构。近年来,人们提出研制具有密度梯度的泡沫金属以获得更优异的性能。其中,精确调控泡沫铝梯度结构是实现其性能优化的关键。本文成功制备了连续密度梯度泡沫铝,并采用实验和数值模拟相结合的方法研究了冷却速率、生长速率和保温时间等控制参数对泡沫铝相对密度梯度的影响。通过建立耦合熔体泡沫生长和凝固行为的数值模型,实现了对密度梯度的定量预测。基于模型预测结构开展的验证试验表明:发泡剂的含量较高或保温时间较短时,数值模型预测结果准确率较高。实验研究还发现了泡沫铝胞壁的微观结构随着远离冷却端距离的变化而不同。此外,本文通过试验及数据拟合方法获得了泡沫铝的材料参数与相对密度之间的经验关系。在此基础上,本研究建立了梯度泡沫铝的准静态压缩模型,该模型能够准确预测梯度泡沫铝的准静态压缩应力-应变关系。本文采用实验、理论及有限元模拟相结合的方法研究了梯度泡沫铝在高速冲击下的动态响应。霍普金森压杆实验结果表明:当梯度泡沫杆以高速(133m/s)撞击刚性壁时,通过调整相对密度分布能够产生恒定的冲击应力(9.2MPa、10.9MPa)。在相同的冲击能量下,正梯度泡沫杆的冲击应力峰值低且恒定。基于此,本文修正了泰勒冲击理论模型,准确预测了梯度泡沫杆与刚性壁之间的接触应力。同时,本研究通过有限元模型数值演绎了多种密度梯度对泡沫铝高速(300m/s)冲击应力的影响,探索了泡沫杆在高速冲击下获得恒定冲击应力的最佳线性相对密度分布,对比了等质量的正梯度泡沫杆、均匀泡沫杆、负梯度泡沫杆在相同冲击速度下的力学响应。研究发现:在相同的冲击能量下,负梯度泡沫杆的塑性变形量最小、能量吸收效率最高。研究表明冲击应力演化历程不仅与泡沫杆的初始密度分布有关,而且与冲击速度衰减历程等因素相关。
其他文献
太赫兹技术在太赫兹光谱学、高速通信、安检成像、生物医学和天文遥感等领域获得了快速的发展,具有巨大的应用潜力。太赫兹探测技术的研究一直是太赫兹技术领域的关键。半导体微纳加工技术的快速发展,为低维材料在太赫兹和红外光电子器件领域的研究提供了有力的技术支撑。二维层状结构的半导体(半金属)材料因其面内载流子输运通道、较大的相对表面积和亚波长(深亚波长)的厚度尺寸而展现出独特的电学和光电子学性质,为实现高速
二维半导体以其独特的结构和优异的物理性能,成为近年来的研究热点。这些二维半导体包括二维层状材料、二维钙钛矿和二维纳米片等,它们的带隙涵盖了可见光到红外的光谱范围,在新型光电探测领域有着巨大的应用前景。如何充分利用光电转换机理,在器件性能和功能方面发挥二维半导体的优势,一直是研究人员重点关注的研究领域。迄今为止,基于二维半导体的光电探测器已有大量报道,但在它们得到实际应用之前还有很大的改进空间,存在
在综述产教融合与旅游管理专业实践教学研究现状的基础上,分析旅游管理专业实践教学体系目前存在的问题,提出基于市场导向、能力进阶和产教融合的原则构建旅游管理专业实践教学体系,通过共同开发实践课程体系、共同设计实践教学模块、共同打造实践教学团队和共同建设实践教学基地等路径优化旅游管理专业实践教学体系。
在高校思想政治工作会议上,习近平总书记强调思想政治工作者要教育引导学生树立四个正确认识。一是教育引导学生正确认识世界和中国发展大势,即认识和把握人类社会发展和中国特色社会主义的历史必然性,不断树立为共产主义远大理想和中国特色社会主义共同理想而奋斗的信念和信心。二是教育引导学生正确认识中国特色和国际比较,即全面客观认识当代中国和外部世界,明确人类社会是多样性发展的统一。三是教育引导学生正确认识时代责
自石墨烯首次发现以来,其优异的电学、光学特性受到人们的广泛关注。由于石墨烯具有宽带吸收以及高载流子迁移率的特性,使其在光电探测领域备受瞩目。随着材料制备技术的发展,类比二维石墨烯材料,涌现出了具有各种特性的新型二维材料,它们由于受到纵向尺度的量子限制,展现出了很多传统半导体所不具备的优异光电性能,这极大的吸引了基于二维材料光电器件的兴趣。然而,原子层级别的厚度的光程使得二维材料的光吸收受限,这是本
自2004年石墨烯首次从石墨中机械剥离出来,一个新的材料领域—二维材料引起了人们的广泛关注。近年来关于二维材料的合成、表征及应用的相关研究呈指数增加。二维多层材料是以层内强共价键及层间弱范德瓦尔斯力结合在一起。由于维度降低所带来的量子限制效应和弱屏蔽效应赋予二维半导体许多新奇物理效应,展示出不同于块体材料的独特物理性质。其中二维半导体材料在多个领域都具备重要的应用前景,其优异的电学性质既可以降低功
随着供给侧结构性改革的推进,智慧物流已经成为现代物流发展的必然趋势和制造强国战略的重要支撑。如何适应行业转型升级的趋势、满足经济高质量发展的要求,通过智慧物流建设促进物流产业降本增效、实现绿色低碳发展,成为业界和政府高度关注和积极推动的重大课题。然而,我国智慧物流建设进程中依旧存在着一系列问题制约了智慧物流的发展,突出表现为政府监管与政策扶持力度不足、行业标准制定缓慢且不完善、物流企业软硬件资源匮
由于二硫化钼具有原子级的厚度,合适的带隙大小和晶圆级批量制造的潜力,因而高性能的单层二硫化钼场效应器件在构造下一代原子级薄的数字集成电路方面具备极大的潜力。本论文主要从二维材料的场效应器件的加工、性能优化、原型器件的制备,以及二维材料器件的大面积制备与垂直集成方面开展工作。首先,我们发展了一种可控的、非破坏性的原位氧掺杂单层二硫化钼的化学气相沉积技术,氧掺杂浓度在20%-25%以下可调。氧以一种取
异质非等径随机粉体颗粒在压制致密化生产过程中,模腔内部颗粒的变形特征及规律很难认知。传统的方法就是通过试验法反复测量压坯致密度,这样不仅耗费时间,而且增加了生产成本。本文运用JAVA编程语言构建了随机非等径粉体颗粒(以铜-钨粉体颗粒为例)在工程实际中复杂的自然堆积真实状态以及通过有限元分析MSC.MARC从微观角度出发,模拟了粉体颗粒在压制成形过程中的状态,以期发现粉体颗粒在压制变形中的特征规律,
作为目前最具发展前景的技术,粉末冶金技术能够快速高效地生产高性能结构材料及复杂零件,具有切削少、易加工等特点。粉末冶金零件成形的重点是粉末压制工序,对压制成形过程进行数值模拟能够降低产品开发成本。数值模拟的关键在于材料本构模型的建立,其中修正的Drucker-Prager Cap模型能够较好地描述粉体压制过程中的屈服阶段。但是由于粉体本身的复杂性、其参数需要通过单轴压缩实验、巴西圆盘实验和模压实验