金属氧化物复合材料的合成及其在电化学高级氧化中的应用

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:liuliang82
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
印染行业、造纸行业、石油化工等行业在加工和制造过程中,往往会产生大量有机废水,危害人们的生存环境和生命健康。电化学高级氧化技术作为一种适用范围较广的水处理技术,由于其活性物质主要是具有较强氧化性的自由基,使这种技术具有效率高、操作简单、环境友好的特点,在近年来受到了广泛的关注。其中,阳极材料是决定电化学高级氧化降解性能的关键因素,开发高性能的阳极材料是从事相关方向研究人员的工作重点。因此,本文设计并合成两种电极材料,将这两种电极材料作为阳极材料,以甲基橙为模拟污染物,组成电解池系统,测试其电化学高级氧化降解性能。论文主要研究内容如下:(1)通过一步水热法,合成了PbO2、PbO2/Pb3O4以及Pb3O4三种电极材料,利用“涂敷法”制备成相应的催化电极并组成三电极电解池后,测试其对甲基橙的降解性能。实验结果表明,PbO2/Pb3O4复合电极显示出最优的性能:在150 min内对于甲基橙的降解效率可以达到94.3%,伪一级反应动力学常数可以达到0.0208 min-1,是相同反应条件下PbO2电极以及Pb3O4电极降解速率的1.2倍和1.6倍。同时,PbO2/Pb3O4复合电极在0.5 M Na2SO4溶液中,析氧电位可以达到1.79 V;在5 m A cm-2的最优测试电流下,电极寿命可以达到15552 h,均高于PbO2电极以及Pb3O4电极的析氧电位和电极寿命。(2)通过多巴胺改性辅助水热合成的方法,在碳纸上原位生长β-FeOOH,制备成β-FeOOH自支撑电极。将β-FeOOH电极作为阳极,测试其对甲基橙的降解效果。该电极在25 min内对于甲基橙的降解率可以达到99.4%,伪一级反应动力学常数为0.113 min-1。此外,该电极也呈现出将较好的循环稳定性:经过8个循环测试后,对于甲基橙的分解率仍然可以达到84.9%。本论文的研究结果表明,以碳纸为基底的两种金属氧化物复合电极:PbO2/Pb3O4电极和β-FeOOH电极在电化学高级氧化技术中具有高效耐久的特点,有希望发展成为可持续利用的电化学高级氧化催化电极。
其他文献
当今,世界原油重质化和劣质化趋势加重,原料中硫含量明显上升。在这种燃料需求不断增加、环保法规日益严格和原料劣质化的多重压力下,我国炼油业面临巨大挑战,尤其对加氢脱硫(HDS)技术提出了极高的要求。HDS技术的关键和发展核心是催化剂,传统浸渍法制备的金属硫化物催化剂由于制备过程缺乏有效控制,导致组成复杂且不明确,多种活性组分共存,很难获得其活性相的确切微观结构信息,造成对活性相结构认识难以深入,不利
学位
脂肪酸酯含有C12~C18的碳链,可通过合适的催化剂体系转化为芳烃。ZSM-5分子筛广泛应用于芳构化反应,但是因孔道狭窄、酸性太强影响脂肪酸酯芳构化的芳烃收率和稳定性。本论文通过水热合成制备ZSM-5分子筛,对其进行碱处理和Zn改性调控孔道结构和酸性,并采用油酸甲酯作为反应物,在同一反应条件下考评各分子筛的催化性能,探究孔道结构及酸性质对催化性能的影响。首先,通过水热法合成粒径为150 nm左右的
学位
催化油浆因烯烃、硫组分的存在,限制了其在绿色船舶燃料油和高附加值产品碳纤维、针状焦等方面的应用。浆态床加氢作为催化油浆提质优化进而实现绿色高效转化的重要途径之一,有望通过烯烃组分的饱和以及硫组分的脱除来实现催化油浆的高效利用。而实现催化油浆的高效转化利用的关键在于选择合适催化剂,并实现其高度分散提高催化活性。因此本文主要围绕催化剂活性相的制备展开制备条件的优化,通过模拟油浆体系的催化加氢,提高对催
学位
我国煤炭储量丰富但石油资源匮乏,利用煤/重油加氢共炼技术能有效提高煤炭和重质油的利用率,为轻质燃料油的生产提供途径,极具发展前景。然而煤与重油配制的油煤浆为固液分散体系,具有热力学不稳定性,在储存、输送和预热过程中会出现煤粉沉积等现象,引发管路堵塞和设备损害等系列工程问题。本文首先讨论了温度、煤粉性质、原料油性质以及非离子表面活性剂对油煤浆稳定性的影响,并探讨了提高油煤浆稳定性的方案。然后研究了剪
学位
山梨醇是非常重要的化工平台化合物,异山梨醇是山梨醇的一种脱水产物,非常具有市场应用前景。由山梨醇脱水生成异山梨醇主要是经过两步脱水反应。关于由山梨醇脱水制备异山梨醇的研究课题,主要有两方面问题有待深入探讨,一个是高效、可循环利用的催化剂的挑选;另一个是山梨醇脱水反应的动力学相关问题的研究。当前,浓硫酸作为酸催化剂催化山梨醇脱水制备异山梨醇在工业上已有广泛应用。本文在此基础上,对浓硫酸催化山梨醇脱水
学位
低碳烯烃(主要是乙烯和丙烯)是石油化工行业重要的基础原料之一。目前,低碳烯烃的来源主要是靠蒸汽裂解和催化裂解工艺,为生产低碳烯烃作出了巨大的贡献。近年来,由于低碳烯烃需求量的不断增加且化石能源储量有限,故有必要探索一种新的技术路线增产低碳烯烃。生物乙醇具有价格低廉、来源广泛以及可再生等优点,以生物乙醇为原料制备低碳烯烃被视为是一种极具发展前景的重要技术,实现了有机化工和生物化工的紧密结合,受到广大
学位
Y型分子筛由于其具有三维微孔结构、较高比表面积、良好的水热稳定性以及较强的酸性,是催化裂化催化剂中的重要组分。然而,在面对较重组分的裂化过程时,由于分子筛仅具有狭窄的微孔结构,重油大分子无法进入孔道,导致结焦生碳以及催化剂效率不高的问题。人们尝试在Y型分子筛中引入介孔制备出等级孔Y型分子筛,以提高扩散。常规合成等级孔分子筛的方法有模板法以及后处理法,然而这些方法一般具有成本昂贵、操作复杂或者产生过
学位
随着能源消费的快速增长以及环境污染的日益加剧,人们对可再生清洁能源的需求也与日俱增。氢气作为一种理想的二次能源,具有绿色、环保、能量密度高等优点,因此被认为是化石燃料的理想替代品,而电催化分解水制氢则被认为是最有前景的制氢技术之一。而近年来研究发现氨作为一种有前景的氢载体和燃料电池的可能燃料,其具有一系列吸引人的特性:17.6 wt%的高氢容量以及比液化氢高50%的比能量密度;易于在环境温度和略微
学位
二氧化钛是一种性能优异的陶瓷材料,具有耐高温、酸碱、腐蚀的特性,在无机陶瓷分离膜方向有着广阔的应用前景。本文利用不同钛源制备得到TiO2纳米粒子,再以该粒子为原料制备陶瓷分离膜,探究其在多孔材料领域的应用。具体内容如下:以钛酸四丁酯为原料通过溶胶-凝胶法成功合成了不同粒径尺寸(10~60nm)的TiO2粒子。实验中以硝酸为抑制剂,无水乙醇为分散剂,探究了表面活性剂种类、温度和滴加时间、氢离子浓度、
学位
光能作为可再生能源之一,有着储量丰富,环保无污染的特点,是传统化石燃料的优质替代品。在如何有效的利用太阳能方面上,光敏剂发挥着举足轻重的作用。传统光敏剂(贵金属、金属氧化物以及生物大分子等)有着诸如价格昂贵、不耐受苛刻条件、合成过程复杂等缺点。M-N-C材料有着类似生物酶的活性中心,并且是碳材料,有着优异的稳定性和电子传输能力,是一种较为理想的光敏剂。本文以廉价的有机配体和过渡金属盐合成了Co-N
学位