原位制备颗粒增强铝基复合材料的组织控制和性能研究

被引量 : 26次 | 上传用户:dy_dj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
原位制备颗粒增强铝基复合材料是复合材料研究领域的热点,前期研究集中在开发不同的原位合成工艺和体系。如何通过过程优化来控制颗粒在基体中的形貌和分布特征对促进复合材料发展非常关键,所以通过优化原位合成体系、制备和成型工艺来控制复合材料的组织和性能具有重要的理论意义和现实意义。论文的研究基于两个学术思想:一是对原位合成的复合材料实现组织控制,包括颗粒种类、形貌、尺寸和分布以及基体晶粒度和硅相等,为复合材料的实践应用提供有章可循的理论依据;二是挖掘电磁技术在复合材料制备领域的应用,在优化复合材料组织的同时,体现电磁技术在复合材料制备中的优越性和前景。首先用Al-Zr(CO32组元通过熔体直接反应法原位合成了Al-Zr-O系颗粒增强铝基复合材料,颗粒强化相是Al2O3和Al3Zr;用Al-Zr(CO32-KBF4组元和Al-Zr(CO32-H3BO3组元合成了Al-Zr-O-B系复合材料,颗粒强化相是Al2O3、Al3Zr和ZrB2,颗粒粒度2~3μm。为了促使颗粒细化和在基体中弥散分布,通过外加电磁场来控制复合材料组织。用电磁搅拌法原位合成(Al2O3+Al3Zr)p/Al复合材料,当磁感应强度0.025T时,颗粒在基体中弥散均匀分布,且尺寸细化,粒度1~2μm。原因是切向电磁力造成熔体涡流,反应物颗粒更易进入铝液,增加了反应物之间的接触几率,电磁力加大了体系的混合对流运动,提高了传热传质和物质扩散速度,并促进增强颗粒在铝基体中的弥散均匀分布。并且当B值为0.04T时,电磁搅拌力增大,在离心作用下制备出颗粒分布呈现梯度特征的(Al2O3+Al3Zr)p/Al复合材料。高频磁场叠加低频正弦调制信号后可产生高频正弦调制磁场,当高频电流30A,外加正弦波信号频率10Hz,电压幅值7V时,磁感应强度为0.029T,系统研究了线圈内磁场分布规律。调制磁场产生的扰动、搅拌、振荡等效应,改善了固液相体系铝热反应的动力学条件,合成复合材料中颗粒体积分数成倍增加,颗粒细化至1~2μm,且在基体中均匀弥散分布。磁化学分析认为熔体接收了磁场能量,改善了原位反应体系的熵增和能量状态,促进了原位反应的进行。制备好的复合材料熔体如果采用金属模成型,存在气孔和缩松等浇注缺陷,而采用“挤压铸造”成型可提高组织致密度并细化基体晶粒,颗粒形貌没有明显变化,适于生产复合材料铸件。为了大规模生产铸锭,进行熔体的“半连铸”和“半连铸电磁搅拌”成型,浇注温度710~720℃,拉坯速度9cm/min,冷却水量为0.8t/h,颗粒特征没有大的变化,但分布均匀化程度提高。并当电磁搅拌磁感应强度0.025T时,基体晶粒度细化,出现大面积等轴晶,硅相形貌随搅拌强度增加由片状初晶硅向针状、细棒状共晶硅转变。又采用“高频电磁连铸”改善“半连铸电磁搅拌”铸锭表面质量,选用特制闭路水冷割缝结晶器,实现了铸锭与结晶器之间的软接触。当线圈内电流80A时,铸锭表面光洁,无明显褶皱;高频方波调幅磁场的铸锭表面存在周期性振痕,调幅波频率越高,振痕的间隔就越小。基于合成成型工艺的研究结论,提出复合材料的“联合电磁制备”概念,即熔炼过程中施加低频磁场,连铸过程中施加低频高频磁场的复合材料铸锭制备方法,充分利用电磁场在复合材料制备中的优越性。凝固组织观察发现,复合材料中颗粒弥散均匀分布,粒度在1~2μm,适于工业规模制备高性能高表面质量的复合材料铸锭。对于基体合金、15vol%(Al2O3+Al3Zr)p/A356复合材料熔体金属模成型、挤压铸造、半连铸电磁搅拌以及联合电磁连铸时制备的复合材料抗拉强度分别为184.6、263.2、345.7、355.8、340.6MPa,相应的延伸率分别为7.1%、4.7%、15.1%、14.2%、10.1%。断裂机制多是脆性和塑性混合断裂。材料耐磨性研究结果显示,并非反应物加入量越多,复合材料的耐磨性越好,因为颗粒在其中起到支撑减磨和脱落后加剧磨损的双重效应。对于(Al2O3+Al3Zr)p/A356复合材料的最佳颗粒理论体积分数值是10%。本次研究外延了原位制备复合材料的体系内容,并拓展了电磁技术在材料制备中的应用领域,将电磁搅拌和高频调制磁场成功运用到颗粒增强铝基复合材料的原位合成和成型工艺中来,并优化了磁场参数,电磁力改善了原位合成过程的热力学和动力学条件,促使颗粒细化和在基体中的弥散均匀分布。提出了复合材料熔体挤压铸造、半连铸电磁搅拌和联合电磁制备的复合材料成型过程机制,控制了复合材料铸件和铸锭的内部组织和表面质量,并在电磁力作用下制备出颗粒增强梯度复合材料。
其他文献
改革开放以来,外商直接投资(foreign Direct Investment简称FDI)促进我国经济的发展,给我国经济注入了资本和活力。随着经济的发展和我国经济实力的增强,人民币实际汇率的不
洋葱(Allium cepa L.)是一种世界性蔬菜,同时也是一种药食两用的传统植物,其主要生理活性物质为多种含硫化合物,存在于洋葱油中。目前的研究都是从洋葱鳞茎提取洋葱油,洋葱叶
中国城市化进程的迅速加快直接带来社会公共建设事业的迅猛发展。作为公共空间领域的公共艺术,不但是城市文明的一种有效载荷,它在视觉确认性和创新公共空间方面具有放大城市
近年来,随着电炉炼钢短流程的兴起,作为废钢替代品和生产优特钢不可或缺的原料,直接还原铁倍受青睐,直接还原技术及直接还原铁产量发展迅速。我国煤资源及铁精矿丰富,适宜发
介绍了一种已工业化应用的磨砂铝型材生产工艺。在前人研究的基础上 ,从碱液浓度、温度、络合、整平等方面进行试验 ,获得了较理想的砂面铝型材的工艺配方
自1949年以来,大陆与台湾地区(以下简称“海峡两岸”或“两岸”)司法机关一直缺乏正式的官方接触和联系,至今没能建立起切实有效的区际刑事司法协助机制。在两岸签署全面区际
针对当前我国蔬菜脱水加工中存在的问题和不足,本研究将热泵干燥技术应用于蔬菜的脱水加工。利用先进的计算机控制技术和组态技术,设计了热泵干燥装置的微机自动监控系统,对
随着经济的快速发展,我国投资环境的不断改善,对跨国公司的吸引力越来越大,跨国公司加速了在我国的投资扩张规模,其在华投资企业对金融服务的需求也呈现出新的特点。加入WTO
大学作为思想教育最集中、网络应用最频繁的地方,网络对大学生的影响两极分化的现象更为明显,一部分学生利用网络媒体进行课余时间的学习,更多一部分学生则利用网络进行娱乐.
短切玄武岩纤维增强橡胶混凝土(Chopped Basalt Fiber reinforced Rubber Concrete,简称CBFRC)是将短切玄武岩纤维加入到橡胶混凝土中,通过与柔性材料橡胶颗粒的复合作用,在