六氟化硫直流低气压击穿特性的模拟研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:ajianginger
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
六氟化硫(Sulfur Hexafluoride,SF6)作为一种强电负性气体,不仅广泛用于电力系统的绝缘,还广泛应用于航空航天中低气压下的绝缘和微电子工业中的等离子体刻蚀等,研究低气压下SF6的击穿特性对这些应用有重要的意义。目前低气压下SF6的直流击穿特性的实验与理论数据都较少,本论文针对低气压下SF6的直流击穿现象,研究了该过程中的等离子体参数演化和放电模式,并模拟了对应的帕邢曲线。采用了一维隐式粒子蒙特卡洛模拟程序来研究SF6在直流低气压下的击穿特性。考虑了外电路模型和二次电子发射模型,除了电子-分子碰撞模型,还重点考虑了离子-分子碰撞模型,其中包括三种负离子和两种正离子与SF6的654个碰撞反应,此外正负离子间的复合反应模型也被考虑其中。研究了SF6在直流低气压下的整个击穿过程,整个击穿过程可以被分为三个阶段:预击穿阶段、击穿阶段和后击穿阶段。在预击穿阶段,阴极鞘层还未形成,恒定电场存在于整个放电区域。在击穿阶段,分析了阴极鞘层的形成机制,放电整体从容性逐渐转变为阻性,与外电阻进行分压。在后击穿阶段,继续增长的正离子导致了阳极鞘层的形成,最终形成负的等离子体电势。包括加热功率和二次电子功率在内的能量产生项与包括碰撞损失功率和边界损失功率在内的能量损失项相等,其中碰撞损失功率和边界损失功率大小相当,二次电子功率太小以致基本可以忽略。最终等离子体的各项参数逐渐演化到稳态。进一步研究了SF6在直流低气压下的放电模式与帕邢曲线。分析了外加电压和气压对放电的影响,外加电压影响击穿放电时延和阴极鞘层厚度,气压不影响等离子体密度但影响鞘层厚度。根据扫描结果发现了SF6在直流低气压条件下击穿的三种模式:不击穿放电模式、常规击穿放电模式和局部电离击穿放电模式,局部电离击穿放电模式出现在帕邢曲线的右上方区域,此时电离是局部的,体区电势在空间上呈梯度分布。提出了一种帕邢曲线程序算法,得到了SF6直流低气压范围下的帕邢曲线,结果与实验吻合较好。
其他文献
托卡马克装置中的偏滤器承担着排热排杂的重要任务。随着等离子体参数的不断提高,偏滤器靶板上的热负荷峰值将远超现有材料承受极限,对托卡马克装置的安全稳定运行造成严重威胁。研究表明仿星器装置可以利用磁岛偏滤器位形,降低偏滤器靶板热负荷峰值,同时实现偏滤器的稳定脱靶运行。在托卡马克装置中,可以利用外加三维磁扰动激发边界磁岛,并配合偏滤器靶板,形成磁岛偏滤器位形。将这种先进磁岛偏滤器位形引入到托卡马克装置中
学位
加速极电源是中国聚变工程实验装置(China Fusion Engineering Test Reactor,CFETR)负离子源中性束注入系统(Negative-ion-based Neutral Beam Injector,N-NBI)样机的核心部件,输出电压高达200 k V,是中性束能量的主要来源。为实现电源的高性能稳定输出以及输出故障时的快速保护,需要对加速极电源控制系统进行研究。本文完
学位
在聚变等离子体实验研究中,电子密度是需要关注的重要参数之一,测量等离子体电子密度主要基于电磁波在等离子体中的传播特性和技术。激光干涉作为一种常规的等离子体密度测量手段,在聚变研究装置上得到了广泛应用。华中科技大学场反位形研究装置(Huazhong University of Science and Technology Field Reversed Configuration,HFRC)等离子密度
学位
加速极高压直流电源是大型聚变装置负离子源中性束注入系统(Negative-ionbased Netroin Beam Injector,N-NBI)的关键部件,为N-NBI系统提供主要能量。电源输出电压纹波直接决定了束流的发散度,进而影响N-NBI系统的加热效率和运行安全。电源采用变流器交直交变换和变压器升压整流的逆变型拓扑,变流器直流母线含有较大的纹波能量,且直流母线的电压波动与高压输出纹波直接
学位
无线电能传输技术相比于传统有线输电方式具有灵活便捷、电气隔离、安全可靠、环境适用性强等供电优势,极具广泛应用前景及实用价值。本文围绕传输距离、系统功效等技术指标,基于铁氧体磁芯提出了能够提高无线电能传输的传输功效、输电距离,实现多自由度及多端负载无线供电的磁偶极线圈多向多负载无线电能传输系统设计方案,主要研究工作及成果如下:1)基于四种磁谐振补偿拓扑特点,建立了磁偶极线圈系统的等效磁路及等效电路分
学位
等离子体密度是磁约束聚变装置实现商业化的重要参数,然而托卡马克运行区间存在密度极限,一旦超过密度极限,将出现密度极限破裂影响装置安全稳定运行。边界热不稳定性是密度极限破裂的先兆之一,然而目前已有的研究无法给出热不稳定性演化引发密度极限破裂的关键因素。为了更加全面理解热不稳定性以及其与密度极限破裂的关系,有必要通过数值模拟和实验的手段研究热不稳定性导致密度极限破裂的物理机制,探索提高托卡马克密度极限
学位
电子回旋电流驱动(Electron Cyclotron Current Drive,ECCD)系统可以通过驱动非感应电流改变电流密度剖面、抑制新经典撕裂模等,有助于维持高约束与高比压等离子体。自1980年Fisch提出ECCD理论,在不同国家的托卡马克装置中ECCD实验都取得了明显的进展,J-TEXT托卡马克于2019年也发展了ECCD系统。为了深入理解ECCD与等离子体的相互作用以及优化ECCD
学位
托卡马克内部输运垒(Internal Transport Barrier,ITB)的形成可以显著降低反常输运水平,提高等离子体的约束性能。虽然离子的热输运被降至新经典水平,但电子热输运依然反常,该通道的ITB(electron ITB,eITB)形成机制尚不完全明确。无碰撞捕获电子模(Collosionless Trapped Electron Mode,CTEM)湍流作为引起电子反常热输运最有可
学位
HFRC(HUST Field Reversed Configuration)装置是基于场反位形等离子体对碰融合与磁压缩概念而设计搭建的实验装置,其由电源系统、磁体系统、脉冲注气系统、真空抽气系统及控制系统等共同组成。由于在电离气体时刻的气压条件会影响到形成的等离子体参数,因此脉冲注气系统需要与电源系统在时序上相互配合。本文的主要工作是对脉冲注气系统的设计及初步搭建。本文首先分析了脉冲注气系统的设
学位
在磁约束核聚变中,为实现聚变点火通常需要采用辅助加热方式。电子回旋共振加热(Electron Cyclotron Resonance Heating,ECRH)具有良好的局域加热能力且波与等离子体耦合机制简单,是常见的辅助加热方式之一。电子回旋波实时功率作为ECRH系统的重要参数之一,对系统的安全稳定运行及相关物理研究有着重要的意义。基于J-TEXT装置105 GHz/500 k W ECRH系统
学位