325MHz微波栅控热阴极高压型电子枪的设计研究

来源 :中国科学院大学(中国科学院近代物理研究所) | 被引量 : 0次 | 上传用户:qzjp16300
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高平均流强、高重复频率的电子枪具有广泛的应用,在用于医学和辐射的粒子加速器领域有着重要的地位。本文设计了一种325MHz工作于CW模式的微波栅控高压型电子枪,该电子枪放置于-300kV高压平台,产生的高频束流经进一步调制后注入超导电子直线加速器。该加速器能够产生高平均流强、高平均功率的电子束流用于生产高原子序数的医用同位素。本论文的主要工作是完成了该电子枪的结构设计、电路系统设计、高频微波传输器件设计、束流动力学计算以及10kV微波栅控电子枪实验平台的介绍。利用电子枪仿真计算软件EGUN,首先完成了该电子枪结构的设计,在设计直流电子枪时通过调整聚焦极长度和倾角的大小、阳极形状与阳极孔宽度、真空室半径、栅阳极间距等来调整束流品质。利用电磁场仿真计算软件Poisson(Poisson Superfish)计算该电子枪内部电场分布,从而对电子枪结构设计提供优化方案,避免了因表面峰值场强过高引发的电击穿。利用束流动力学仿真计算软件GPT(General Particle Tracer)完成该电子枪的束流动力学计算,验证该电子枪产生的束流在325MHz射频微波与栅控负偏压的混合调制下,由栅极出射后经静电场加速产生的电子束团其横向发射度与能散等参数满足设计要求。论文的另一个重要工作是完成了该类型微波栅控电子枪工程设计,包括该电子枪的供电系统设计与供电器件设计。针对该类型电子枪微波-直流双供电模式,以及该同轴阴极特殊的阻抗系数,利用史密斯圆图验证了阻抗匹配结果,设计了可调谐的部分,保证微波能以较高的传输效率由325MHz射频功率源馈入阴栅极之间。该同轴器件的设计是文章的主要创新点,是该类型电子枪能够产生325MHz高频束团的重要保障。文章在工程上详细阐述了该同轴器件的设计过程与使用方法,经网络分析仪测试满足设计需要,达到预期的设计目标。为验证该类型电子枪系统的设计可用性,搭建了放置在10kV高压平台上的325MHz微波栅控电子枪实验平台。利用栅控电源、稳态高压电源进行供电调制束流,利用FCT和示波器进行了实验测试,获取截止电压与束团长度等数据,为后续的300kV高压型325MHz微波栅控电子枪的工程设计提供了经验。
其他文献
质量是原子核基本属性之一,反映了核子之间各种相互作用的综合效果,对于了解核结构与元素起源有着重要作用。对于β稳定线附近核素的质量,大部分在实验上已经被精确测量,而对于滴线附近核素,由于寿命短、产额低,实验上测量还存在一些困难。位于兰州的重离子研究装置HIRFL(Heavy Ion Research Facility in Lanzhou)被认为是世界上少数几个可以对滴线附近核素质量进行有效测量的大
11B(p,γ)12C反应发生在原初核合成和恒星氢燃烧过程中。鉴于该反应并非上述相应过程中考量的关键核反应,所以目前为止并没有被详尽地研究。然而,假入我们想要深入研究诸如原初核合成过程中碳、氮、氧精确产额之类的问题,该反应将会变得非常重要,因为原初气体中碳、氮、氧含量的多少对第一代恒星的演化具有重要的影响。本文利用薄靶实验方法,在Ec.m.=130–257 keV能区首次直接测量了11B(p,γ)
X射线暴是宇宙中最常见的热核爆发现象,而14O(?,p)17F反应在爆发模型中扮演着至关重要的角色。X射线暴理论模型研究指出,14O(?,p)17F是αp过程中非常重要的反应,其反应率灵敏度将对X射线暴的光曲线产生显著影响。由于各家实验数据存在较大分歧,导致无法得到可靠、精确的反应率。至今,X射线暴模型采用的14O(?,p)17F反应率仍然是基于比较老的实验数据得到的。为了得到更加精确的反应率,我
本实验通过25Al+p共振弹性散射实验对X射线暴过程中一个重要的核天体反应22Mg(α,p)25Al进行了间接测量。X射线暴是X射线双星系统中X射线突然增强很多倍的现象,其核过程包括3α反应、αp突破过程以及rp过程等。而αp过程中所有(α,p)反应的反应率都直接影响着X射线暴光变曲线的上升时间甚至光变曲线的整体形状。Cyburt X射线暴模型计算结果显示,在所有的(α,p)突破反应中,22Mg(
高能量密度态通常被定义为能量沉积密度高于1011J/m3的物质状态。高能量密度物理(HEDP)就是针对该状态下物质的结构及特性进行研究的新型交叉物理学科。目前,实验室中产生高能量密度物质/温稠密物质的方式主要包括激光/重离子束驱动或Z-pinch驱动,其特点是维系时间短(<1μs),空间分布不均匀且材料多样化。因此,亟需一种具有高空间分辨能力(<10μm)和高密度分辨(1%)的超快诊断技术以获取H
2030年前实现碳排放达峰、2060年前实现碳中和,是习近平总书记和党中央高瞻远瞩作出的重大战略决策,是中国对国际社会的庄严承诺。绿色金融是金融服务实体经济的重要着力点,在加快推进经济绿色低碳发展、促进我国经济社会发展全面绿色转型、努力实现"零碳经济"的远景目标方面发挥着重要的催化、支持和助推作用。
期刊
重离子加速器是一个复杂而庞大的大型装置,包含着大量的大功率脉冲电源、高频腔等众多电能转换设备。在加速器运行的过程中,设备电磁能量的快速变化产生了较强的电磁干扰噪声,形成复杂多变的电磁环境,对加速器设备及系统的可靠性有一定影响。随着加速器技术的进步,重离子加速器朝着高能量,高流强的方向发展。2018年,“十二五”国家重大科技基础设施“强流重离子加速器装置(HIAF)确定在广东惠州建设一台国际领先的强
长期深空载人飞行过程中,空间辐射、微重力等环境因素可导致航天员严重的机能紊乱或不可逆损伤。研究电离辐射、微重力、两者复合作用对红系分化的影响及药物的防护效果对正确认识和缓解“航天贫血症”具有重要意义。本论文以氯化高铁血红素诱导分化的K562细胞为红系分化模型,研究电离辐射(12C6+、X射线)、地面模拟微重力效应对红系分化的影响机制及硫辛酸的防护效果。主要的研究内容如下:1.K562细胞红系分化模
兰州重离子加速器(Heavy Ion Research Facility in Lanzhou,HIRFL)是我国第一台集加速、累积、冷却、储存、内外靶实验及高分辨粒子探测于一体的大型重离子同步加速器装置。其中,磁铁电源系统是HIRFL重要组成部分,其主要为磁铁提供特定的励磁电流,以产生加速器所需要的磁场。磁铁电源内部的直流电流传感器(DC Current Transducer,DCCT)和模数转
中国科学院近代物理研究所承担的十二五强流重离子加速器装置(HIAF)将采用移动式脉冲高频(Moving Barrier Bucket)堆积方案,该方案克服了传统注入方式由于空间电荷效应所导致的束流损失,是突破传统束流堆积方式瓶颈、提高重离子流强的有效方法。由于Barrier Bucket(BB)堆积方法对高频电压波形极其敏感,电压波形的畸变会导致束流的品质下降,因此需要研究高频低电平系统对BB电压