PDMS软/硬膜体系中表面微结构的应变调控及其微流控应用

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:zcxwlh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微流控装置在粒子操作、制药和生物医学等领域具有重要的意义,广泛应用于流体流动的控制和微粒子的处理。其中,微阀系统能够精确控制颗粒和流量,而倍受研究人员的青睐。传统的微阀系统需要借助昂贵复杂的外加仪器,限制了微流控装置的小型化和集成化。基于此,本论文提出了一种简单而有效的应变可调的裂纹和褶皱微阀的构筑策略。通过研究微阀尺寸与外加应变等相关机制,制备了基于应变可调裂纹及褶皱微阀的微流控装置,成功实现了微球筛选和可编程微流控制的功能。本文主要内容如下:(1)裂纹与褶皱微结构的制备。基于紫外臭氧处理与拉伸或预拉伸方法制备了PDMS软/硬膜体系,结合单轴拉伸,对弹性体构建了裂纹与褶皱两种微结构。研究了紫外臭氧处理时长与拉伸应变分别对两种微结构尺寸的影响。PDMS优良的可拉伸性能使得软/硬膜体系能够拉伸至100%,形成均匀、可控的裂纹与褶皱微结构。两种微结构具有制备流程简单,成本低廉的优点。(2)微颗粒筛选及控制液体流动的设计与实现。将微结构与微流控芯片相结合,构建了由应变调控的微流控芯片微阀。在应变的调控下,柔性微流控芯片中两种不同类型的微阀呈现不同的趋势。在释放状态的时候,裂纹微阀关闭,施加应变,裂纹微阀打开,液体流通,而褶皱型微阀呈现相反的趋势。两种微阀具有集成度高、响应快和可并行运行的优点。此外,本文对裂纹型微阀的爆破压力和流量进行了表征和模拟,实验结果与模拟现象证实了爆破压力和流量的可控性。(3)裂纹/褶皱微结构在润湿性、粘附性和光学特性的可逆转变。当应变从0增加到40%的时候,褶皱振幅大幅下降,表面粗糙度降低。液滴与PDMS表面接触由Cassie状态到Wenzel状态。当施加40%拉伸应变时,褶皱表面粘附力足以抬起玻璃球。应变释放后,样品表面粗糙度增加到临界值时,玻璃球因失去粘附力而从样品上掉落。当拉伸足够大时,由于泊松效应,沿横向的压缩引起Si Ox条纹的起皱,在PDMS表面形成正交的裂纹-褶皱微结构,能有效地散射透过薄膜的光。拉伸应变释放后,褶皱图案变平,裂纹通道闭合,薄膜表面恢复到初始透明的状态。
其他文献
金属材料在服役时会遭受严重的腐蚀,使得金属的服役周期大幅下降。环氧树脂(EP)涂层能够隔绝腐蚀介质的侵入且成本低廉,在金属防护领域应用广泛,但是EP脆性高,机械性能差且涂层在固化过程中会产生一些微小孔洞导致涂层的防护效用大打折扣。而在EP中适当的添加一些功能填料是提升环氧涂层性能的有效手段。本文采用超耐磨SiC和强耐蚀六方氮化硼(h-BN)为填料增强EP涂层的防腐性能。首先,对SiC进行超疏水改性
二维半导体材料的出现为研发可穿戴、轻便化、高性能、宽波段探测的光电子设备带来重要机遇。二维α-In2Se3是一种同时具有面内、面外极化的直接带隙铁电半导体材料,具有较高的载流子迁移率和较强的光吸收能力,是研发高性能光电子器件的可靠材料。然而,目前针对α-In2Se3光电晶体管光探测性能的研究并不系统,其应用于较强辐射环境下的可靠性研究亟待开展,还需开展其光电探测性能的调控方法研究。本文聚焦于二维α
近年来,荧光探针因为具有操作简便、快速实时等特点被广泛用于环境监测和生物传感等领域,已报道了一系列荧光探针用于重金属阳离子(如Cu2+,Pb2+,Zn2+)、阴离子(如HSO3-,ClO-,CN-)和各种小分子(如H2O2,GSH,Cys)的传感。尽管这些荧光探针具有简单高效和选择性好等突出点,但探针的选择性、灵敏度和水溶性问题仍然是荧光探针研究的重点。本论文针对以上问题,我们开发了三种具有特异性
预应力混凝土连续梁桥被广泛应用于交通基础设施建设当中。但随着过去修建的一大批预应力混凝土桥梁逐渐老化,再加上施工设计缺陷和超载运营等常有发生,导致开裂和长期挠曲变形过大问题日益凸显,亟需重视。而现阶段关于预应力混凝土连续梁的长期力学性能的试验研究大多侧重于未开裂阶段,而且截面形式往往以矩形截面为主,跨数为两跨居多,对于多跨预应力混凝土连续箱梁开裂阶段的长期力学性能研究主要以数值模拟为主,缺乏相应的
氨氮是水体中的常见污染物,自然水体中氨氮的排放通常来自工业、农业以及生活污水。废水中过量的氨氮会对人类健康和环境带来严重的危害。膜吸收由于其能耗低、装置规模可控、设备构造简单和脱氨效率高等优点,近年来受到广泛的关注。本文使用静电纺丝法,通过两种不同的纺丝液体系制备了PTFE中空纤维膜,并通过控制静电纺丝和烧结条件进一步优化了制备工艺,制备出了具有高孔隙率、强疏水性和优异力学性能的膜材料。结合脱氨传
南海岛礁建设远离大陆,特别是应急建设易受海况、运距制约,而就地取材,有效利用广泛分布珊瑚礁坪和潟湖的珊瑚砂是解决这一问题的有效途径。但是,高盐、高温和高湿等恶劣的海洋环境具有侵蚀作用,尤其氯离子渗透侵蚀珊瑚砂建构筑物。因此,营建“安全岛”、“生态岛”就必须考虑阻滞氯离子渗透,采用掺入极少量的氧化石墨烯(GO)到珊瑚砂砂浆,最大程度改善珊瑚砂砂浆阻滞氯离子渗透的性能,满足工程建设的要求。本文在对比河
航天飞行器主结构舱是航空航天领域高端装备的关键部件,具有材料成本高、加工难度大、加工时间长等特点,对航天飞行器主结构舱进行再制造具有显著的经济效益。航天飞行器主结构舱在疲劳载荷和腐蚀的作用下极易产生裂纹,裂纹的产生会对航天飞行器的运行带来严重的安全隐患,因此,再制造修复前,需要通过无损检测技术对裂纹进行检测并进行定量化表征。结构健康监测技术通过布设在构件表面或嵌入构件内部的传感元件采集构件的运行信
碳化硅(SiC)作为第三代宽禁带半导体材料,有着宽禁带宽度、高击穿电场、高热导率等特点,是发展大功率、高频高温以及抗强辐射等技术的关键。电子器件在空间环境工作期间,会受到空间辐照粒子以及射线的影响,导致器件性能退化,从而影响航天器在轨服役的可靠性。迄今为止针对碳化硅功率器件的中子位移损伤研究较少,且研究对象主要集中在对辐照前后电学特性变化的描述。本文基于上述背景,针对碳化硅肖特基二极管以及场效应晶
锥形橡胶弹簧常应用于轨道交通之中,能起到减振、增加车辆舒适性的作用。橡胶弹性元件在工程应用中所面临的工况异常复杂,大变形与交变载荷的作用会对产品造成损伤,材料受到损伤后其疲劳寿命次数与刚度值都会受到严重影响,其损伤的大小将直接决定材料在工程中是否还能继续使用。因此了解橡胶产品的疲劳破坏因素与准确预测产品疲劳寿命至关重要。本文的主要工作如下:1.在综述国内外对于橡胶材料疲劳失效研究的基础上,总结引起
钢-混凝土组合梁凭借着其在稳定性、抗震性、施工便捷性等方面的突出表现在建筑领域得到了从业人员的广泛认可。但是钢-混凝土组合梁的上述优点仅仅在其承受正弯矩作用时才能有效地发挥出来。由于混凝土材料与钢梁材料的力学性能差异,处于负弯矩区域的钢-混凝土组合梁容易出现混凝土板损坏、钢梁局部失稳的破坏现象。这类现象的出现严重损害了建筑结构的安全性、适用性、耐久性。针对钢-混凝土组合梁在负弯矩区域出现的混凝土板