激光增材制造(TiB2+TiC)增强铝基复合材料工艺及微结构研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:qinglinqiuyi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属材料激光增材制造技术是以高能量密度激光束作为热源,通过激光熔化金属粉末(或丝材)后形成微小熔池,在三维空间内无限堆积凝固成复杂结构实体零件的快速制造过程。在这一过程中,激光局部作用下的材料快速熔化与熔池快速凝固阶段反复交替进行,从而使成形构件表现出基本无化学元素偏析、晶粒极其细小的非平衡凝固组织特征。近年来,通过激光增材制造灵活而高效地制备铝基复合材料,已成为提高铝合金综合性能的重要手段。本文借助激光增材制造结合原位合成方法制备铝基复合材料,以期为激光增材制造原位合成复合材料提供理论和实验依据。对于铝基复合材料而言,尽管外加增强相法可以提升异位复合材料的部分性能指标,但增强相与基体之间较差的润湿性以及二者的热膨胀系数等差异,将不可避免地恶化复合材料的其它性能。鉴于此,本文针对激光增材制造原位合成铝基复合材料的微结构特征与制备机理进行了系统研究。以B4C-Ti-Al Si10Mg为原位化学反应体系,通过选区激光熔化工艺制备了原位(Ti B2+Ti C)/Al Si10Mg基复合材料。重点讨论了不同成分配比下的复合粉末特性,以及所制备复合材料的物相含量、晶格常数等微结构演变规律与力学行为变化特征。在此基础上进一步优化了粉末成分配比,并采用粉末包覆工艺制备了反应用复合粉末。对比分析了包覆条件对复合粉末特性与复合材料的成相特点、原位增强相特征等微结构的影响。基于热力学理论,阐述了激光诱导下原位复合材料的合成与制备机理。研究结果表明,通过较低的激光能量输入(119 J·mm-3)和自生的负反应焓变(-760.234 k J·mol-1),能够成功制备原位(Ti B2+Ti C)/Al Si10Mg基复合材料。物相定量结果显示复合材料中存在的过渡化合物Ti3Si C2的含量与成分配比正相关,最高值为18 wt.%。通过图解外推法测得α-Al基体相的晶格常数a从0.40466 nm逐渐增大至0.40528 nm,研究发现铝基体中的晶格畸变程度与溶质Si原子从溶剂Al晶格内以置换形式析出,并进入原位反应体系内形成过渡相的现象有关。在化学反应热效应的促进下,凝固后的熔池形态发生显著变化,复合材料的平均熔宽和熔深较Al Si10Mg合金分别增加了104%和94%。在力学性能方面,随着复合材料中自生陶瓷相含量的增加,显微硬度大幅提高,拉伸断口形貌显示其断裂特征由韧性断裂逐步向脆性断裂转变。说明陶瓷与基体之间的界面易成为应力集中的薄弱区域,使断裂失效在复合材料颈缩之前发生。进一步地,粉末包覆工艺在提升复合粉末的激光吸收能力和原位化学反应效率的同时,可以有效避免过渡化合物的产生,进而优化复合材料的组织结构。TEM表征结果显示原位Ti B2和Ti C相的晶粒尺寸约为150 nm,在其与残留B4C之间形成了B、C元素的过渡区域,造成位于该区域的铝基体内部产生少数集中位错。在热力学方面,铝合金熔体内有限的Ti源仅能够形成Ti B2而非Ti B,此时体系中极低的反应摩尔Gibbs自由能ΔGm表明为最佳反应路径,且有利于纳米级原位增强相的形成。
其他文献
随着科技的迅速发展,金属基纳米颗粒(Metallic Nanoparticles,MNPs)因其独特的物理化学性质被广泛应用于农业、化工、航天等各个领域。在使用的过程中这些MNPs可以通过大气循环、地表径流等方式进入到环境介质中,从而对生物及人类健康造成潜在威胁。随着粒径的减小,MNPs的比表面积增大、表面电荷密度增加、表面能增大,这些变化在很大程度上影响着MNPs的界面反应及其生物效应,MNPs
镧系掺杂上转换纳米颗粒能够将近红外激发转化为可见和紫外发射,目前,上转换纳米颗粒因其光学稳定性和化学稳定性高、潜在毒性低、光穿透深度大、无背景光干扰以及对生物组织几乎无损伤等显著优点,在哺乳动物细胞的成像领域得到广泛的研究和应用,但其在植物细胞中的成像鲜少报道。这是由于植物细胞具有特殊的细胞壁结构(3~10 nm),其中厚厚的纤维素和果胶阻碍了大分子物质的进入,因此,应用于植物细胞成像的纳米颗粒应
南秧田矿区位于华南板块西南缘,地处滇东南老君山多金属成矿区东侧,金属矿产资源丰富。为进一步探明矿区矿产资源,扩大矿区矿产资源储量,深边部找矿成为目前亟需解决的问题。本文对南秧田矿区的地层岩性、岩浆岩、构造等控矿要素进行了研究,借助三维地质建模软件,建立了地质体模型和矿体模型,并运用证据权重法对研究区进行了找矿预测,辅以信息量法验证,筛选、圈定并评价了找矿靶区。取得了以下4点成果和认识:1.整合了南
镁合金作为“21世纪绿色工程材料”,具有一系列优良的力学及物理性能,被广泛应用于航空航天、国防军工、3C(通讯、计算机、消费类电子)产品以及交通工具等领域。但由于镁及镁合金弹性模量低,导致镁的使用严重受限。学者们常采用的Si C、碳纤维、碳纳米管等一系列传统增强体,虽然能显著提升镁基复合材料的弹性模量,但却以复合材料塑性的显著下降为代价,这是由于传统增强体与Mg基体之间界面结合差导致的。因此,改善
纳米黑磷因其优异的光电子效应、高载流子迁移率、可调节直接带隙等性能在催化、储能、场效应晶体管等领域展现出好的应用前景。然而,纳米黑磷的应用受限于其制备方法。并且,纳米黑磷的应用性能及领域与其结构形貌密切相关。此外,由于纳米黑磷在空气和水中的稳定性较差,一定程度上影响了其在应用时的性能。因此,开发新型纳米黑磷的制备方法,并提升其稳定性,不仅可以拓宽纳米黑磷的应用领域,还可提升其应用性能。本文围绕新型
纤维素是地球上最丰富的天然可再生资源,并且具有可降解、环境友好、低成本等优点,因此被广泛应用,其复合材料的制备及应用成为各国研究的热点。我国玉米产量在2020年高达2.6亿吨,产生了约3.12亿吨的玉米秸秆,但这些秸秆并未得到充分利用。中国于1890年引进桉木,思茅松也被广泛种植于云南、四川等地,在2017年,桉木的种植面积高达4.6×106 hm2,但大部分桉木和思茅松被广泛应用制浆造纸工业中并
由于优异的物理化学特性和丰富的性能,以及广泛的应用前景,二维纳米材料引起了众多科研者的研究与关注。其中,二维过渡金属硫族化合物作为二维复合材料中的一类,因为具有很强的拓扑性能、光电子性能和超导性等优异特性而成为了研究的热点。然而天然具有优异电子性质的材料相对缺少,对二维材料的电子性质进行调控是非常有必要的。第一性原理计算对于二维纳米材料的预测以及相关实验研究均起着极其重要的作用。本文研究的主要内容
从古至今,湿度一直是人们所关心的环境参数,主要是因为湿度对于动植物的生长生活、农牧业的发展、货物食品的储运、火箭的发射以及人类的生存健康等领域产生重要影响。湿敏探测器作为人们感知环境中的湿度信息的重要工具,便于人们对特定环境进行实时监测和精确的控制。为此,国内外学者为了获得高性能湿度探测器研发了许多新型的湿度敏感材料,然而随着智能家居技术逐渐步入我们的生活,湿敏探测器的需求与日俱增,渐渐满足不了人
X射线作为常见的一种高能辐照射线,由于其光子能量高,穿透性强的特性被广泛应用于医学诊断、放射治疗、工业探伤、安全检测,航天导航以及科学研究的材料分析等领域中。其中闪烁体作为将X射线光子信号转换为电信号的转换装置为X射线探测器的核心组件,也是目前国家所面对的核心科技攻关技术之一。通常来说闪烁体一般由高密度重元素组成。然而,传统的闪烁体一般是无机晶体,只能在高温环境中生长,这大大增加了生产成本和制备难
在铜基复合材料中,由于其增强体(碳纳米管、石墨烯)与铜基体润湿性较差,在与铜基复合材料复合时极易发生无法均匀分散引起团聚现象,造成界面结合能力差,使其对铜基复合材料的力学强化效果不明显或者造成更大的缺陷,明显未能达到起初实验设计要求;不仅如此,弱的结合界面形成电子势垒、电子散射,严重影响铜基复合材料的电学性能。虽然研究工作者们一直研发新的工艺去改善碳纳米材料在金属基中存在的这些问题,但始终没有合适