AdS/CFT对偶中的非局域算符和Janus构型

来源 :中国科学院理论物理研究所 | 被引量 : 0次 | 上传用户:zhouqin1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本学位论文是作者关于AdS/CFT对偶中的非局域算符和Janus构型的学习和研究。AdS/CFT对偶是全息原理一种非常漂亮的具体表述,它比其它引力/规范场对偶的表述更加清晰和准确,同时它为强相互作用的研究提供了一种重要的方法。作者在AdS/CFT对偶的框架下研究非局域算符和Janus构型,对于深入理解AdS/CFT对偶有很大的帮助。   论文包含以下方面。在第一章里作者简单介绍了必要的背景知识:超对称和规范场,N=4 super Yang-Mills理论和共形场论,超引力和超弦理论以及AdS/CFT对偶。在第二章里我们研究了AdS/CFT对偶中的非局域算符。第三章里我们讨论了一般Janus构型。最后一章我们总结了作者的结果然后介绍了最近的进展。   作者的工作主要是利用AdS/CFT对偶来研究Wilson surface算子以及含有θ项的一般Janus构型:(1)通过AdS/CFT对偶,作者计算了六维(2,0)超共形场论中Wilson surface算子的算符乘积展开。由于Wilson surface算子的高阶表示是用M5膜描述的,所以作者用M5膜来计算球的Wilson surface算子中手征素场(chiral primary)算符的算符乘积展开系数。作者用的是M5的非手征作用量来进行计算的。最后作者讨论了membrane的极限情况,并把作者的结果和Elmembrane情况下的结果进行了比较。(2)作者研究了一般Janus构型的某些方面性质。作者讨论了理论的真空结构。作者分别从超对称和能量泛函方面讨论了BPS孤子解构型。另外,作者也研究了有θ项,但是超对称更少的Janus构型。
其他文献
摘要:在常态阅读教学自然生成的情景中,如何抓住最佳的写作契机,让学生在课本中的经典优秀篇章中进行有效的写作迁移?本文从照搬,仿写,补空,延伸四个方面谈谈自己粗浅的看法。  关键词:阅读教学;以读促写;照搬;仿写;补空;延伸  《全日制义务教育语文课程标准》在“教学目标”中规定,阅读教学要“积累课文中的优美词语,精彩句段,以及在课外阅读和生活中获得的语言材料”。作文教学要“尝试在习作中运用自己平时积
本文简要叙述了快重离子在固体材料,特别是聚合物材料中引起的强电子激发效应研究的基本理论、发展历史和研究现状。描述了在兰州重离子加速器上完成的25 MeV/u86Kr离子辐照叠
我们是刚在那村子里的饭馆用的晚饭,这饭馆四面来风,用餐的食客只有一桌两个年轻男女,整个餐厅空荡荡的。典型的农家菜馆。如果不是想要去高渊河看萤火虫,我想我们不可能来到这里就餐。  码头上有几个人招呼,并大声吆喝,小心!看路!踏过桥板,有两艘机动船在候命。依次上船,那船简陋,有几张横排木凳,每一排只容三个人坐,轮到我时,只排到中间那排的中间位,被左右夹着,每人都要穿上厚厚的橙黄色救生衣,天气又热,颇为
期刊
碳纳米管(CNT)自1991年被发现以来,因其独特的一维中空石墨结构和奇异的电学及力学性质而被广泛研究。其中,调控和改变CNT的结构是很重要的一个方面,因为CNT的性质受其结构的强烈影日响。能量束(如离子束、激光束、电子束等)辐照是一种用于在CNT中产生缺陷的有效技术,它们可以以高度可控的方式改变CNT结构进而改变它的性质。而在现有的文献中,包括利用离子束、质子束、激光束等辐照诱导实现了多壁碳纳米
学位
Ca2+是生命细胞中普遍存在的第二信使,在几乎所有细胞中,Ca2+的振荡都起着至关重要的作用。细胞信号转导、蛋白质的合成与分解以及细胞的繁殖与凋亡都和ca2+有着密切的关系。
学位
背景:能源危机是当今社会发展面临的巨大挑战之一,生物质能源被认为是最成功的替代矿石燃料的能源。甜高粱[Sorghum bicolor(L.)]作为一种C4植物,具有高光效、高生物量及高糖的特
自旋电子学是一门研究电子自旋的科学,而发生正常金属/超导体界面上的Andreev反射是超导电子学中的一个重要课题。在本文中,我们将研究二维电子气/超导体/铁磁金属中的自旋输运
随着激光强度的不断提高,激光与物质的相互作用领域已拓展至相对论范畴,其中利用强激光与气体或固体物质相互作用诱导高次谐波的产生就是该领域迅速发展起来的前沿研究热点,且已
低速高电荷态离子与纳米微孔箔相互作用的研究无论在基础研究方面还是实际应用方面都扮演着重要的角色,因此在近年来受到了广泛的关注,成为一个研究热点。   论文介绍了在兰
由于电子器件性能进一步的提升受到物理规律的限制,近年来光子器件的发展被视为解决信息交换和处理的有效替代,故光子调控和光子产生的材料和结构受到了极大的重视,成为纳米光子