石墨烯基纳米滤膜的原位光催化构建及其分离重金属离子的研究

来源 :福州大学 | 被引量 : 0次 | 上传用户:baotong1029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现代工业的发展,水污染逐渐恶化,由于重金属离子的高毒性,成为了水处理的热点,目前常用去除重金属离子的方法有化学沉淀法、吸附法、离子交换法等等。其中膜过滤因其高效性、成本低、操作简便等特点受到了人们的广泛关注,特别是纳滤膜。石墨烯基纳滤膜因其具备独特的二维纳米通道,在重金属离子分离提纯方面受到了广泛关注。事实上,石墨烯基纳滤膜包括氧化石墨烯和石墨烯基纳滤膜。然而,由于易受温度、湿度、化学试剂等的影响,氧化石墨烯纳滤膜的稳定性受到了很大的影响,从而制约了氧化石墨烯滤膜的深度研究。相比之下,石墨烯(还原的氧化石墨烯)膜具有更好的物理和化学稳定性,而显示出巨大的应用潜能。但由于其易于团聚,使得石墨烯基滤膜的有效制备异常困难。考虑到氧化石墨烯及其复合物具有良好的成膜性,在本文中,我们首先以氧化石墨烯为原料,通过负载具有光催化活性的粒子,制备氧化石墨烯-纳米粒子复合膜;利用纳米粒子的光催化还原作用,将氧化石墨烯进行原位还原,从而获得石墨烯基纳滤膜。在此基础上,开展重金属离子的过滤分离的研究。主要内容如下:(1)通过银镜反应在氧化石墨烯纳米片上负载银纳米颗粒,得到了氧化石墨烯-银复合片,然后借助于氧化石墨烯良好的成膜性,通过真空抽滤组装得到氧化石墨烯-银复合膜(GO-Ag)。在光照激发下,研究了银纳米粒子的等离子效应对氧化石墨烯原位还原的效果。结合结构的表征,掌握了石墨烯-银复合膜(RGO-Ag)有效构建的条件。(2)通过过滤不同种类的重金属离子(如Cr6+、Cr3+、Cu2+、Pb2+),对GO-Ag、RGO-Ag复合膜的分离性能进行了研究。首先,我们以毒性较高的六价铬为模型,开展了相关研究。结果表明:由于配位作用,RGO-Ag膜对重金属阴离子Cr6+具有更好的截留效果;而由于功能团对阳离子的吸附作用,GO-Ag膜对Cr3+、Cu2+、Pb2+重金属阳离子的分离性能略好于RGO-Ag膜。此外,以Cr3+与Cr6+的混合液为模型,结果表明:RGO-Ag复合膜对于混合溶液中的Cr6+的截留效果更佳。(3)通过水热法制备了碳量子点(CDs),然后通过静电吸附作用,将其与氧化石墨烯进行复合;真空抽滤组装成膜,得到氧化石墨烯-碳量子点复合膜(GO-CDs);在此基础上,利用CDs的光催化还原活性,原位还原氧化石墨烯,获得石墨烯-碳量子点纳米复合膜(RGO-CDs)。通过耦合过滤分离以及光催化还原作用,在有、无光照条件下,利用GO-CDs、RGO-CDs复合膜过滤重金属离子,并初步研究反应滤膜处理重金属离子的潜在优越性。
其他文献
由于工业“三废”排放和农药的滥用,我国粮食产区重金属污染严重,粮食质量安全问题成为社会密切关注的焦点。重金属毒性大、难以降解、易于生物蓄积,通过食物链向人体转移将带来一系列健康风险,因此国际组织及各国政府都对粮食和饮用水中的重金属制定了严格的限量标准,现有仪器分析技术灵敏度和选择性好,但仪器大型、检测成本高、对环境和样品要求较高,开发适用于重金属离子灵敏的快速检测方法十分重要。本论文着眼于粮食中重
学位
贵金属纳米复合水凝胶材料利用水凝胶孔径可调的三维网络结构,可分散和负载贵金属纳米颗粒,在利用限域作用防止纳米颗粒聚沉的同时,水凝胶自身的优势性能也能够为复合材料的应用提供新的思路,在分析化学领域得到了良好的发展。本论文旨在分析贵金属纳米颗粒在水凝胶系统内的性能,设计构建新型化学传感装置,探究贵金属纳米复合水凝胶材料的应用价值。研究的主要内容如下:第一章为绪论部分,该部分简要介绍了贵金属纳米材料和水
学位
有机共轭聚合物的π电子共轭体系使其具有独特的光电性能。可以通过分子调控和表面修饰等方法对其氧化还原位置、孔道结构以及表面官能团进行优化。在气体吸附和分离、有机物催化转化、光催化、传感器、生物应用等领域被广泛研究。在本研究工作中,我们主要探究了有机聚合物在光催化领域的应用。通过对有机共轭聚合物表面电子结构的优化,加快表面反应动力学过程和光生电子的迁移速率,降低光生电子-空穴在催化剂表面的复合,提高其
学位
α-卤代硼酸酯是一种非常有用的合成前体,它可以直接转化为α位不同取代基的烷基硼酸酯,在有机合成中有着极为广泛的应用。传统合成α-卤代硼酸酯的方法较少,例如:烷基硼酸酯的Matteson同系化,烯基卤化物的过渡金属催化硼氢化,烯基硼化合物的氢锆化反应等,这些反应条件苛刻,操作复杂且毒性较大,限制了其在有机合成中的广泛应用。因此,探索用温和、简单的方法实现α-卤代硼酸酯的高效构建对有机硼化学来说具有非
学位
有机硼化合物是有机合成中重要的中间体,广泛应用于医药、功能材料、合成方法学等领域。有机硼化合物具有丰富的转化能力,能够快速构建碳碳键和碳杂键等。其中构建碳碳键是有机合成中合成新化合物最常用的方法,例如从传统的过渡金属催化的偶联反应、不饱和键的官能团化反应,到无过渡金属条件下的碳碳键的高效构建,再到后来利用光催化方法快速实现各种碳碳键的构建。近年来,有机硼化合物涉及的迁移反应取得了一些重要的进展,但
学位
多样性导向合成(DOS)方法研究已成为现今合成、药物及生物化学等领域的研究热点,在药物研发及高通量筛选中有着不可或缺的地位。另一方面,光催化脱羧反应是构建C-C键和C-X键十分有力的合成策略,可以快速高效地制备结构多样化的有机分子。本文基于DOS的合成思想和光催化脱羧反应的基础,以自然界广泛存在的廉价易得的羧酸作为起始原料,通过不同的光催化脱羧偶联反应设计,发展了含硼和含氮化合物的新合成方法,为高
学位
妥布霉素属氨基糖苷类抗生素,是一种广谱性抗生素,也是人类广泛使用的药物之一。长期滥用抗生素导致的毒副作用及耐药性,威胁着人体健康和环境安全。电化学适配体传感器结合无酶信号放大技术,具有特异性好、灵敏度高、背景信号低的优点,拓展了传感器的应用范围,在分析领域备受青睐。建立简单、灵敏、便捷的抗生素检测方法,对于保障食品质量安全和环境安全具有重要意义和研究价值。本文研究了两种无酶的新型电化学适配体传感器
学位
烯烃的双官能化可以高效的一步构建两个新σ键,为合成复杂有机分子提供了一种有效方法。其中,以光催化技术实现的烯烃双官能团化反应具有条件温和、操作简单、反应选择性高、低能耗等优点,受到全球科研人员的广泛关注。但常用于该策略的金属基光敏剂存在造价昂贵且无法回收利用等缺点,限制了其在规模化反应中的应用。因此,不含金属组分的非均相光催化剂体系应运而生。硼碳氮(BCN)材料是一种不含金属组分的半导体材料,其具
学位
自2014年诺贝尔化学奖得主Sharpless教授将六价硫氟交换反应定为新一代点击化学反应以来,磺酰氟化合物重新得到了学界和工业界的广泛关注,并在多个领域都表现出了巨大的潜在应用价值。尤其是在过去几年中,磺酰氟基团作为化学生物学和分子药理学中反应性探针的研究引起人们极大的关注。正因其巨大的应用前景,磺酰氟的合成方法学发展备受瞩目。然而,已知的合成方法常存在底物受限,结构单一等问题。鉴于此,本论文主
学位
由凝血和纤溶通路所组成的凝血-纤溶系统是保持人体正常止血和血流通畅的复杂多因素调节平衡体,其直接参与血栓形成与肿瘤迁移等重大病理过程。针对凝血-纤溶系统,发现安全有效的新型抗血栓、抗肿瘤先导分子是现代药物研究的热点方向之一。由于多肽结合了化学小分子和抗体类药物的优点,其在凝血-纤溶系统相关靶标的抑制剂开发中展现出巨大前景。本论文以两种凝血-纤溶系统中重要丝氨酸蛋白酶(尿激酶和凝血因子XIa)为靶标
学位