时空开关型音乐同步理疗系统的设计与实现

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:wodemeng111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于生活工作节奏的加快,慢性疾病困扰着人民的健康,空间环境气候的改变也影响着治疗效果。理疗以其无毒、无副作用和起效快等特点,受到广大慢性病患者的青睐。然而,传统的理疗仪外形笨重、功能单一、治疗过程枯燥、操作繁琐,严重限制了患者的使用。音乐治疗综合了音乐学、医学和心理学,已被古今中外证实为一种特殊的治疗方式。电疗法通过低中频脉冲电流刺激人体组织,进而实现治疗多种疾病。时间治疗学依据时间生物学理论选择合适的治疗时间,实现精准治疗。综合以上因素,本课题设计一款便于携带、功能丰富和适应性广的时空开关型音乐同步理疗系统,该系统包括音乐理疗、电刺激理疗和热疗三种理疗模式,输出多种不同参数的理疗处方。针对目前理疗仪的缺点确定理疗系统的技术参数,本课题结合嵌入式原理、电路学和治疗学等知识设计系统的总体方案,并根据空间环境气候和人体疾病固有昼夜节律推荐合适的理疗方案。主控系统输出三种理疗模式。电刺激理疗模式采用调制模块对音乐低中频处方和STM32输出的多参数初始处方进行调制,输出不同种类、频率、时段和幅度的理疗处方,此理疗处方频率参数融合了经算法提取的音频特征。音乐理疗模式对音频信号调制,输出音乐低中频处方进行理疗,实现声电同步理疗。热疗模式通过STM32控制PWM高电平占周期的比例,改变加热膜温度,实现热电综合理疗。硬件系统设计上,主要包括STM32主控模块、蓝牙音频模块、通用放大器模块、信号滤波器模块、继电器模块、温度采集模块、加热模块、温度控制模块、调制模块、功率放大器模块、电流检测模块、无线通信模块、液晶显示模块、语音提示模块和电源模块。通过电流检测模块对输出电流实时监测,保证理疗的安全性。通过温度控制模块控制加热温度,保证热疗的可靠稳定性。软件系统设计上,STM32移植了μC/OS-Ⅲ操作系统,然后构建各项理疗任务,实现系统的理疗功能。采用离散傅里叶变换和压缩感知算法提取音乐信号的主频特征,写入主控系统中,输出具有音乐特征的理疗处方。热疗过程中对于温度数据的处理,采用滤波算法去除无效值从而获取精确的温度数据,对于温度的控制加入PID算法增加响应速度并降低超调量。液晶显示模块采用USART-HMI软件进行设计开发,使显示界面直观易懂,便于用户调整使用。理疗APP客户端的设计开发便于用户对系统控制,结合用户所处空间环境的温度、湿度和时间推荐治疗恰当的疾病,并定时启动和关闭理疗系统。时空开关型音乐同步理疗系统通过软硬件测试、各理疗功能测试和实验测试,结果均正常。理疗处方频率在1Hz~100kHz,误差在±10%以内。理疗电流强度在0~100mA,误差小于10%。热疗温度范围在34.0~52.0℃,误差在±1.0℃以内。三种理疗模式输出的理疗处方各参数和热疗温度均达到了技术指标,综合实现了本课题的设计要求。
其他文献
随着无人驾驶路面障碍物识别技术的发展,对车前路面形貌进行探测感知并能准确识别出路面上障碍物对保证无人驾驶安全行驶具有重要意义。由于道路上的水障碍种类多样,形态多变,现阶段常用的识别方法很难准确获取不同类型水障碍的识别信息,不能适用于水障碍类型的复杂性。编码结构光法通过水面反射特性能很好适用于对无倒影和有倒影类型水障碍的有效识别,但在反射率特别低的水体中会影响识别结果的可靠性。针对这个问题,本文研究
学位
加速度计动态特性的研究为加速度计在航空、兵器等领域的应用提供了重要支撑。由于加速度计具备固有的动态特性,因此在实际应用前需要对其进行准确的测试。悬丝加速度计被广泛应用于中高精度的惯导系统中,但在运动过程中零位会因外界干扰而产生零位偏移,影响导航精度。现有的测试系统主要测试加速度计的静态零偏,针对动态零偏的测试较少,且无法解决动态零偏批量测试需求。因此,为了获取加速度计动态零偏和固有的频率特性,本文
学位
现如今化工工业对人类社会发展的重要性不断增加,为社会带来了巨大的经济效益。但伴随发生的化工事故严重危害了巡检人员的生命安全。因此,化工环境下的巡检作业成为一项必要而且迫切的工作。化工厂巡检采用传统人工巡检和传感器巡检容易存在人员安全威胁和设备维护成本高等问题。移动机器人巡检技术可实现对易发生泄漏区域的自主巡察,提高巡检效率和准确性,保障巡检人员安全。本文针对化工环境下巡检机器人的编队控制,机器人路
学位
心跳信号是人体最重要的生理信号之一,对心跳信号的检测分析可得知人体的健康状况。目前常用的心跳检测方法主要为接触式检测方法,包括心电图(Electrocardiograph,ECG)法和光容积描记(Photo Plethysmograph,PPG)法等,但这些方法对烧烫伤人员、传染病人以及电极敏感患者不适用。生物雷达因具有非接触、可穿透检测等优势可有效解决这一问题。生物雷达心跳信号具有微弱易受干扰的
学位
金属屏蔽罩作为半导体芯片的保护元件,其表面质量对芯片的性能和可靠性有着直接影响,因此在生产过程中,金属屏蔽罩表面的缺陷检测至关重要。然而金属屏蔽罩表面含有复杂的背景纹理,会在缺陷的检测过程中产生干扰,影响检测的准确性。尽管人工目检和机器视觉的检测方法已经存在,但都存在一定的局限性,并且检测精度不高。近年来深度学习凭借其强大通用性和自主学习能力,在缺陷检测中被广泛的采纳和应用。因此,本文以深度学习方
学位
为提高多路炸药起爆系统的威力,必须使得多路炸药起爆系统中每一路炸药同步起爆,然而无法做到真正意义上的炸药同步起爆,只能够尽量缩小每路炸药起爆的时间差值。为缩小每路炸药起爆的时间差值,就需要设计一套精密时间间隔测量系统来测量每路炸药起爆的时间差值。目前没有专门针对多路炸药起爆系统的时间间隔测量系统,且大多时间间隔测量系统的测量精度较低,测量通道少。本文针对上述问题,开展基于信号处理与时间间隔测量的方
学位
旋翼无人机因其垂直起降、控制简单、便于悬停而在越来越多的领域得到广泛的应用,但是,电动旋翼无人机因其算力弱、容量小、功耗受限等问题,导致其电池相关参数估算精度不足,故通过云端增强其电池管理能力已成为电动无人机(集群)电池管理系统的必经之路。无人机由于工作状态、任务需要或外界干扰,经常会导致与云端中止数据更新,使得电池管理能力增强失效。因此,本文利用端云跨平台架构优势,对无人机电池管理系统数据链断续
学位
随着当代社会经济的迅速发展和汽车数量的增加,环境污染以及能源短缺问题愈发严重,电动汽车凭借低噪、零排放等优势成为了汽车行业发展的主要方向。动力电池作为整车的核心部件,对车辆续航能力、加速时间、安全系数等汽车性能起着决定性作用,准确估计动力电池荷电状态(State of Charge,SOC)能够提高电池的使用效率和用电安全性,让驾驶员实时了解电动汽车剩余可行驶里程,便于电池管理系统(Battery
学位
身管是火炮等速射武器的核心部件,对整个系统的性能和寿命至关重要,其主要作用是将弹丸以一定速度发射至膛口。弹丸在身管膛内的运动参数关乎着弹丸出膛的速度、能量和轨迹,是对弹丸射击精度研究的重要参数。在工作过程中身管承受着高温、高压等冲击载荷,导致其寿命是整个武器系统中最短的部件之一。因此,为了保障火炮的安全运行,针对身管剩余寿命、材料改进的研究仍是重点研究方向。身管外壁在弹丸发射时的高过载环境下的应变
学位
无人装备已成为未来对抗重要手段,随之而来的试验需求日增;而军民融合策略使各类公司均可参与,广泛参与下被试品良莠不齐,常有异常情况发生。靶标的异常情况其后果可能很严重;不但会影响试验测试的准确性,甚至可能造成人员伤亡和重大财产损失。因此,对靶标进行异常行为监测和管控,具有十分重要的意义。本文以靶标(无人机)为研究对象,针对可能出现的失控、越界等异常状态,研究靶标的异常状态规律,建立靶标异常行为的判决
学位