激光加工制备非均匀润湿性表面及其特性研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:tengjun1008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非均匀润湿性表面在雾气收集、液滴运输等领域具有重要的应用价值,但非均匀润湿性表面的制备工艺存在耗时、复杂、材料通用性较差等问题。论文采用一种高效且通用性较强的激光加工方法,通过两次激光刻蚀结合低表面能修饰制备非均匀润湿性表面,着重对非均匀润湿性表面的润湿性、实际应用和时效性进行分析研究。主要内容包括:利用激光刻蚀结合氟代烷基硅烷(FAS)溶液的低表面能改性构造超疏水表面,然后利用二次激光刻蚀制备诸如点/线状凹槽之类的的超亲水图案,从而获取非均匀润湿性表面。利用这种工艺流程可以通过对激光进行电脑端控制来精确获取所需的超亲水图案。对所制备的带有点/线状超亲水凹槽的非均匀润湿性表面的微纳结构和化学成分进行表征,然后对不同尺寸点/线状凹槽的不同体积液滴的接触角和滑动角进行试验测量。结果表明,所制备的点状凹槽具有较强的可控粘附性,线状凹槽具有显著的各向异性粘附。结合超亲水区域的粘附性和超疏水区域的水排斥性,在非均匀润湿性表面上进行多种实际应用,包括图案化表面的制备、液滴运输、液滴抓取和混合,并在铝、铜、钢和钛四种金属表面进行雾气收集试验。结果表明,非均匀润湿性表面的雾气收集效率相对于均匀超亲水表面、均匀超疏水表面和未处理表面均有一定程度的提高,其中非均匀润湿性钢表面提高程度最大,分别为:33.88%、55.98%、63.44%,此外四种金属的非均匀润湿性图案化表面中,钢的雾气收集效率也是最高的。在不同温度下研究非均匀润湿性表面的时间稳定性。首先探究不同温度下的非均匀润湿性表面的超亲水区域的接触角和滑动角的变化趋势,同时对超亲水区域的表面微纳结构和化学成分进行对比分析。结果表明,非均匀润湿性表面的超亲水区域的老化速率明显大于均匀超亲水表面;润湿性变化的原因来自于试验环境空气中非极性C-C/C-H/CSi官能团的吸附和周围超疏水区域交叉污染。最后在不同老化程度的非均匀润湿性表面上进行雾气收集试验,探究时效性对其应用效果的影响。结果表明,随着超亲水区域老化程度的增加,雾气收集效率逐渐降低,且当将样品放置在低温下储存时,雾气收集效率仍能保持在较高的水平。
其他文献
随着航空航天高端装备对超高速、高敏捷、快响应的要求越来越高,提高叶轮叶片、排气喷管、发动机机匣等相应高端零部件耐高温、耐磨损、耐腐蚀等性能的研发需求日益迫切。其中,钛合金具有高强度、高韧性、耐腐蚀等优异性能,被广泛应用于航空航天等领域,但是随着高端装备的发展,其较低的硬度与较差的摩擦磨损性能无法适应新型装备发展的需要。随着激光增材制造技术的不断发展,在钛合金表面熔覆陶瓷增强钛合金可有效改善钛合金硬
随着5G时代的到来,智能手机、PC类终端设备得到了快速发展。为了满足功能需求,封装互连焊点将不断减少,PCB板将越来越薄。目前,Sn-Ag-Cu钎料因其良好的性能应用广泛。但是由于焊接温度较高,硅芯片与PCB板热膨胀系数不同而引起的翘曲严重。共晶Sn-Bi钎料合金具有熔点低、强度高、成本低等优点,是一种很有前途的低温钎料。然而,含Bi钎料脆性大,延展性差,合金中Bi含量对焊点性能影响显著。研究Bi
42CrMo属于超高强度低合金结构钢,由于其具有良好的比强度,被广泛应用于石油工业、航天工业、汽车工业的支撑机构件当中,但是在使用过程中经常由于磨损而发生失效。为了使超高强度低合金结构钢的表面具有较好的耐磨性,通常需要采用表面强化技术来提高工件的使用寿命,但传统的感应表面淬火、电解液表面淬火、火焰表面淬火等一些列表面相变强化技术容易引起加工质量不好、工件尖角处过烧、热变形过大、无法精确控制等问题,
本文以昔阳地下综合管廊项目为例,通过预制叠合式管廊施工工艺的实施应用,达到了提高工效、降低物料消耗、减少环境污染,绿色施工的效果,并且保证了建筑工程质量。
空心变截面构件的设计与使用是实现轻量化的重要途径。针对截面周长变化不大的薄壁管件的成形,目前较为成熟的工艺有压力顺序成形和充液压形,两种工艺均是使用液体作为填充压力介质支撑管壁,不可避免的会出现成形过程中压强波动大和密封困难等问题。针对该问题,提出了将气液混合物作为填充压力介质以支撑管壁的压制成形方法。首先,本文针对圆形截面管压扁和压方两种典型的压制成形过程,进行各个阶段的几何分析和受力状态分析。
Zr基块体金属玻璃(Bulk Metallic Glasses;BMGs)主要存在于多元体系,某些特定成分具有很大的玻璃形成能力(Glass-Forming Ability;GFA),在低冷速条件下能够形成厘米级块体金属玻璃。Zr基块体金属玻璃具有高强度、高弹性、高耐磨和耐蚀性等优异性能,在生物医用和电子器件等领域有潜在应用。GFA联系着BMG合金的成分设计、制备、性能和应用,一直是该领域研究中的
工业纯铁具有单一铁素体组织,综合强韧性好,是良好的软磁材料,广泛应用于电子工业等领域。同时,工业纯铁还具有钢铁材料的典型元素和结构,对研究体心立方结构(Body-centered cubic,BCC)金属具有基础性意义。关于工业纯铁疲劳变形后微观位错结构、宏观应力应变及断裂行为等已有大量研究,但对细观层次上疲劳变形机理研究尚存不足。因此,本文以工业纯铁为研究对象,将电子背散射衍射(Electron
高速精密压力机广泛应用于电子器件、轨道交通以及航空航天等领域,滑块下死点精度是决定其产品质量以及模具寿命的重要参数,同时也受到多种因素影响。针对高速精密压力机关键构件运动精度进行分析与优化设计具有重要意义。本文以高速精密压力机双滑块六杆机构为研究对象,研究转动副磨损以及杆件弹性变形对滑块下死点精度的影响,综合考虑两者分析结果以及杆件制造误差,进行连杆长度公差精度综合与可靠度评价,并对下死点精度测试
激光增材制造技术(LAM)是一种新型制造技术,其是利用高能量激光束逐层熔化金属粉末,直接从三维CAD模型中生成金属零件的先进技术。因具有生产周期短、加工成本低、材料利用率高、不受零部件尺寸和几何形状限制、无需模具直接实现近净成形等优势,受到了广泛的关注和重视。然而目前用于激光增材制造的钛合金多为传统的合金体系,并未考虑到激光增材制造过程中独特的超高温、强对流、小熔池的微区物理冶金条件以及超高温度梯
难熔高熵合金结合了高熵合金的设计理念,以高熔点的前过渡族难熔元素为主,是一种特殊的高熵合金。该类合金不仅具有高强度,良好的抗氧化和抗腐蚀等性能,而且由于高熔点元素的引入,使得其高温性能更加优异,有望作为高温合金应用于航空航天。然而相较于传统的Ni基高温合金,目前主流的含Al的轻质难熔高熵合金体系的共格组织结构呈现“倒置”状态,并且纳米析出粒子形貌不完美,导致该类合金体系仍存在较大脆性。研究表明,通