论文部分内容阅读
随着无线通讯技术以及移动通讯系统等的飞速发展,对器件和电路性能的要求越来越高,进而推动人们去不断探索新的材料和研发新结构的器件,以满足未来半导体产业的需求。其中,SiGe HBT异质结双极晶体管以其高性能、高集成度、低成本以及与硅工艺兼容等众多优点,明显优于Si BJT器件和Ⅲ-Ⅴ化合物异质结器件,在移动通讯、卫星通讯、传感和雷达等众多领域得到了广泛应用。SiGe HBT器件已经成为当今最为活跃的研究热点之一。本文首先概括了SiGe HBT的国内外发展历史及其研究现状,提出了本课题的研究意义及应用价值;讨论了SiGe合金材料的材料特性并对SiGe HBT的基本工作原理进行了简单的介绍;对SiGe HBT的性能进行了详细的讨论与分析,包括工作电流、电流增益、特征频率、最高振荡频率、Early电压等,并给出了相应的计算公式,通过分析发射极延迟时间、发射区存贮时间、基区渡越时间、集电结空间电荷区渡越时间、集电极延迟时间等,重点讨论了其对特征频率的影响;根据理论研究及分析,着重从发射区设计、基区设计和集电区设计入手,针对SiGe HBT器件的设计规则及设计要求,以提高电流增益、频率特性及击穿电压等为目的,确定了器件设计所采用的相关工艺技术,对结构尺寸以及工艺参数等的确定给出了相应的参考指标;对实现超高频SiGe HBT可制造性设计所采用的新一代TCAD仿真工具(包括工艺级仿真工具Sentaurus Process;网格优化工具Sentaurus StructureEditor;器件物理特性模拟工具Sentaurus Device;仿真结果分析工具Inspect及TecplotSV;集成虚拟化设计平台Sentaurus WorkBench)进行了简要介绍;最后使用Sentaurus TCAD仿真工具实现了超高频SiGe HBT器件的工艺仿真和器件物理特性模拟,选定基区宽度、基区掺杂浓度、基区锗含量、发射区掺杂浓度和集电区掺杂浓度为控制因素,基于适当的试验设计(DoE)方法及理论,建立合理的响应表面模型(RSM),研究了工艺参数变化对器件物理特性的影响,通过优化设计得到了最佳的工艺参数值;最后对仿真结果进行了简要的分析及讨论,重点讨论了器件的增益特性、频率特性和击穿特性,最终完成了一款性能优良、满足超高频应用领域要求的SiGe HBT异质结双极晶体管的可制造性设计。本工作对超高频SiGe HBT的工艺及器件物理特性进行了深入探讨,最终完成的这款SiGe HBT异质结双极晶体管最大电流增益达到265,特征频率为76GHz,最高振荡频率为176GHz,集电极与基极击穿电压BVcbo=9.1V,发射极与基极击穿电压BVebo=11V,集电极与发射极击穿电压BVceo=6V,Early电压为18.35V,可见增益特性、频率特性、击穿特性等都达到了理想的设计值,为国内SiGe HBT异质结器件及集成电路的进一步研究奠定了基础,具有一定的参考价值及应用价值。