论文部分内容阅读
现场可编程逻辑门阵列(FPGA)因其高度灵活性和低成本,在众多领域里占据越来越重要的地位。随着FPGA的应用日趋复杂,FPGA中使用的逻辑门数不断的增多,集成度不断提高,产生的功耗越来越大,造成FPGA芯片上的温度越来越高,这些都有可能造成电路可靠性的下降。芯片功耗不均匀增加,会导致热斑的产生和温度梯度的增大,单一结温的测量不能反映出空间的温度分布,对于总功耗和平均芯片温度的估算方式不可避免地对热斑的位置造成了误判。因此,研究FPGA处于工作状态时的温度分布具有重要的意义。本文提出了一种智能温度传感网络,测量了Altera公司CycloneШ系列的FPGA的瞬态温度分布,不同于以往的电压或者电流式的架构,采用环形振荡器作为感测温度的方式,将温度信号转换为延迟时间,这种温度传感器可以动态在FPGA内部进行插入,或者删除。在此基础上进行了深入研究,具体内容包括以下几个方面:一、基于环形振荡器提出了一种智能温度传感器,用于动态测量FPGA的瞬态温度分布。这种智能温度传感器利用环形振荡器的延迟与温度的对应关系实现探测温度。被测温度可以被转换成一个随温度成比例变化的时间信号。输出频率被一个带扫描回路的计数器读出,然后通过串口传回到电脑的上位机。将这种温度传感器应用在FPGA上,测量了运行不同程序下的FPGA的温度分布。然后讨论了不同反相器数目和电源电压对温度传感器的影响,计算出了温度传感器的热响应时间。二、分别在真空和大气下对这种智能温度传感器进行评估。红外热像仪作为准确的温度参考。我们使用FLIR公司的SC5000红外热像仪来测量FPGA的温度分布,为了更加精确的温度测量,使用激光技术减薄FPGA芯片的封装。经过对比这种智能温度传感器可以适用于各种型号的FPGA。误差最大为1.6℃。三、基于HotSpot软件对FPGA进行温度建模仿真,在HotSpot软件中绘制FPGA的布局规划图,修改各项配置文档,仿真可获得FPGA的温度分布图,进一步与温度传感器得到的温度分布对比。