介质阻挡放电联合催化材料脱除废水中抗生素的研究

来源 :山东理工大学 | 被引量 : 0次 | 上传用户:crazyasp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于抗生素的滥用和不恰当处理,在环境中检测到越来越多的抗生素,这给生态环境和人类健康带来巨大的威胁。采用吸附、膜分离、活性污泥法等传统方法处理抗生素时,通常存在去除效率低、易产生二次污染等问题。因此,亟需开发一种高效的抗生素处理技术。介质阻挡放电等离子体(DBD)作为高级氧化法(AOPs)之一,由于其非选择性和高效性受到越来越多的关注,但DBD也存在着能量利用率低等缺陷,针对这些问题,将催化材料引入DBD系统构建DBD催化体系可以有效解决能量利用率低等问题。因此,本研究采用DBD协同催化材料技术降解抗生素废水。本文采用水热合成法制备不同晶型的MnO2和不同铁锰摩尔比的活性炭负载铁锰氧化物(FMAC)催化材料,分别对环丙沙星(CIP)和盐酸四环素(TCH)废水进行降解,探究DBD协同催化体系降解抗生素废水的有效性,考察单一影响因素对抗生素废水降解效果的影响,分析DBD协同催化体系降解抗生素废水的主要机制。研究DBD协同MnO2催化体系对CIP废水的降解效果。采用水热法制备α-MnO2、β-MnO2和γ-MnO2三种不同晶型的MnO2;利用XRD、SEM和XPS等表征技术研究不同晶型的MnO2。不同反应体系降解CIP的实验结果表明:协同催化体系有效提高了CIP的降解效率,其中α-MnO2>γ-MnO2>β-MnO2,DBD协同α-MnO2降解CIP的效果最好,反应50 min后CIP的降解效率高达93.97%。较低的初始浓度和较高的放电电压促进CIP的降解,同时CIP的降解效率随着空气流量的增加是先升高后降低的,中性条件下CIP的降解效果最好。叔丁醇(TBA)和对苯醌(p-BQ)的加入显著降低CIP的降解效率,证明·OH和·O2-在CIP降解过程中占主导地位。液相中O3的浓度随处理时间的增加而增加,添加α-MnO2催化剂后,促进DBD系统中生成更多的·OH。通过LC-MS分析鉴定,确定9种中间产物,并推断出3条可能的降解路径。研究DBD联合FMAC催化体系降解TCH废水。采用水热法制备不同铁锰摩尔比的FMAC,对制备的不同铁锰摩尔比的FMAC催化材料进行XRD、TEM和XPS等表征分析。不同反应体系降解TCH的实验结果表明:协同催化体系有效促进TCH的去除,其中FM<F3M1AC<F1M2AC<F1M1AC<F2M1AC,DBD联合F2M1AC对TCH的降解效果最好。随着放电电压的增加和催化剂投加量的增加,TCH的降解效率不断提高,同时在碱性条件下TCH的降解效果最好。二甲基亚砜(DMSO)的添加使TCH的降解受到明显的抑制,表明·OH在TCH的降解过程中起主导作用。液相中生成的O3随着放电时间的增加而增加,F2M1AC材料的引入,促进更多·OH的产生。通过LC-MS的测定结果,分析表明碳碳双键、碳氮键和苯环被氧化破坏是TCH主要的降解途径。
其他文献
生物油蒸汽重整制氢技术被公认为是实现生物质大规模制取H2的最有应用前景的技术之一,开发利用潜力较高。基于国内外研究学者在生物油蒸汽重整技术理论基础研究和技术开发等方面已有的进展和问题,本文以Ni基纳米微粒催化剂为研究对象,对生物油衍生物乙酸蒸汽重整过程中H2、CO、CO2、CH4等气体的释放行为进行了深入探究,详细分析了催化剂的化学组成(Ni、ZnO、Ce O2)和结构与其反应活性和抗积碳性能之间
声学超材料以其特有的弹性波带隙特性,对中低频噪声具有良好的控制效果,为汽车减振降噪提供了新的理论方法和途径。目前,各类声学超材料主要是通过逆向设计提出的,当声学超材料的结构尺寸和介质参数一旦确定,其带隙特性随即固定,难以实现对弹性波的精确控制。本文以亥姆霍兹共振腔(Helmholtz resonator,简称HR)型声学超材料为研究对象进行分析,提出了一种适用于HR型声学超材料的正向设计方法。本文
随着互联网的快速发展,海量的信息给人们带来便利的同时,也造成了“信息过载”的问题,个性化推荐系统被认为是解决信息过载问题的有效工具之一。推荐算法作为推荐系统的核心,对推荐效果有着决定性的影响。在许多在线推荐系统中,用户和系统之间的交互被组织成会话,会话指的是在一定的时间内发生的人与系统的交互序列。基于会话的推荐算法就是根据用户当前的交互序列对用户的下一个动作进行预测。基于会话的推荐算法与深度学习技
近年来,随着经济的高速发展,手机、电脑等电子产品的消费热度越来越高,电子产品的生命周期变短,大量电子产品被丢弃或闲置,这些废弃电子产品造成了资源浪费和环境污染。世界各国都认识到了回收废旧电子产品的重要性,督促相关企业对废旧电子产品进行回收和再制造。此外,企业也意识到废旧电子产品的回收、再造能为自己带来更好的口碑和更高的收益。在这种发展趋势下,再制造闭环供应链问题成为了重要的研究议题。此外,随着信息
落叶阔叶林是中国重要的地带性植被,研究中国落叶阔叶林的分布格局并分析影响其分布的控制因子可以为开展植被区划、规划生态建设等提供重要参考,对山地植被的保护、恢复和重建等具有重要意义。本文基于全国土地覆盖数据、中国年度植被指数(NDVI)空间分布数据以及气候数据(温度、降水),并广泛收集国内外公开发表的有关落叶阔叶林研究的相关书籍、期刊论文等资料,采用文献资料检索法、重心迁移模型分析法、相关性分析法和
汽车转向外拉杆是在汽车转向系统中起到重要作用的零部件,直接影响汽车转向的操纵稳定性、灵敏性以及行驶安全性。为了保证转向外拉杆产品能够满足诸多性能要求,保证产品性能的稳定性,提高生产效率,必须对转向外拉杆结构进行优化。本文通过试验与有限元方法相结合,对某型号转向外拉杆进行了结构优化,主要的研究内容如下:转向外拉杆的主要产品性能要求包括转向外拉杆拉脱力与球销摆动角度大小,要满足转向外拉杆的这两个产品要
微型曲面薄壁零件广泛应用在精密医疗器械、电火花微型电极及微型涡轮等领域。由于其尺度小(厚度往往小于100μm)、刚度差,对其进行高精密加工难度较大。近年来,利用微细铣削技术加工具有较大宽高比的微型薄壁零件已经成为一种趋势,然而,微细铣削是一种微量切削工艺,与传统切削所需要考虑的侧重点不同,其中所涉及的切削机理与规律尚需要深入研究,以提高微型薄壁特征的加工精度与效率。因此,本文针对微型薄壁零件微细铣
催化生物质与富氢塑料共热解制备芳烃的综合利用方式得到越来越多的重视。近年来,HZSM-5分子筛催化剂因具有特殊的孔道结构、酸性质,在生物质/塑料共热解制备芳烃过程中,表现出优良的催化效果,但其孔道结构非常的小,初级热解大分子物质极易与其表面酸位点作用形成焦炭,造成催化剂失活。因此,本文选取具有高比表面积、丰富表面官能团、可调节且发达孔道结构的活性炭作为催化剂,开展活化改性活性炭和其作为炭基催化剂催
为了社会可持续发展,发展高效电动汽车势在必行。当前发展阶段,锂电池凭借能量密度高等优势,成为电动汽车能量源的首要选择。但在负载突变工况下,锂电池会急剧大功率电流充电或放电,对车载能源系统效率和寿命产生负面影响;其次,锂电池受电池中活性物质化学反应速度的影响,高强度制动工况下能量回收能力有限,从而影响整车能量回收效率。由于具有功率密度高、能量转化效率高等特点,飞轮适合作为电动汽车的辅助能量源,可以有
随着社会的不断发展和进步,电力系统中的感性无功负荷越来越多,系统对于无功电源的需求也越来越高。现有的无功补偿装置种类繁多,但在众多的无功补偿装置中,电力电容器成套装置因具有制造简单、成本低、运行可靠性高等优点而得到广泛应用。串联电抗器和电力电容器是电力电容器成套装置无功补偿回路中最主要的电气设备,然而在实际的运行过程中,往往会发生一些故障,若故障设备得不到及时发现和处理,不仅会影响电力电容器成套装