论文部分内容阅读
惯性约束核聚变精密物理实验对高纯无氧多晶铜材料零件的表面质量提出了极高的要求,要求其轮廓误差优于3μm、表面粗糙度优于20nm、亚表面损伤层深度极低等。其中,超精密单点金刚石切削加工由于其加工效率高、加工精度高、亚表面损伤层可控、加工误差可控等优点,是用于制备高精度多晶金属零件的一个有效手段。然而,由于加工尺度较小,基于超精密切削的高精度加工成形是刀具与材料高度耦合的过程。材料的自身性质对加工产生显著的影响,制约着超精密切削加工表面质量的进一步提高。特别是金刚石切削多晶无氧铜材料的过程中,尺寸效应引起的各向异性加工特性以及晶界高度差等现象对表面粗糙度以及表面完整性存在显著的影响。然而,以往多晶材料的金刚石切削加工实验以及仿真研究中普遍将工件视为各向同性,未考虑材料内部微结构,忽略晶粒和晶界等材料微观结构对切削加工的影响。因此,为了提高加工表面质量,实现超光滑表面的金刚石切削,需要进一步探究加工过程中的材料微观变形及加工表面形成机理。为了探究多晶铜金刚石切削过程中的材料微观变形行为,本文基于晶体塑性理论建立多晶铜的晶体塑性本构模型,以精确描述纯铜材料的弹塑性变形。此外,基于材料的破坏模型,结合有限元软件中的单元删除功能,实现切削仿真过程中的材料去除。将材料晶体塑性本构模型和材料去除准则两者嵌入到商用软件Abaqus的用户子程序中,实现切削加工的晶体塑性有限元仿真。同时,利用纳米压痕仿真与实验结果对比来校核晶体塑性本构模型中的参数。所建立的模型以及校核的参数将为本文后续的研究奠定理论基础。基于所建立的晶体塑性本构模型,对纳米压痕以及纳米刻划进行有限元仿真。通过仿真结果探究晶体铜的机械性能,重点关注晶体铜的塑性变形及其各向异性特性。同时,与仿真参数完全相同的条件下,利用纳米压痕以及纳米刻划实验进行仿真结果的验证。通过探究多晶铜的各向异性变形机理,为多晶铜金刚石切削中的材料自身性质研究提供理论基础。基于所建立的多晶铜金刚石切削晶体塑性有限元模型,对多晶铜金刚石切削进行有限元仿真,结合实验验证探究正交切削加工的各向异性及其所导致的已加工表面上晶界高度差现象。正交切削实验中选择具有直线切削刃的单晶金刚石刀具,以对应二维晶体塑性有限元仿真中的刀具几何形状。通过双晶铜金刚石正交切削的有限元仿真、相应的实验验证以及横截面透射电子显微镜表征,揭示晶界高度差的形成机制。利用有限元仿真设置正交切削过程中的不同参数,探究刀具刃口半径、晶界错位角以及晶粒尺寸对晶界高度差的影响,为抑制晶界高度差的形成提供理论指导。最后,利用金刚石端面切削加工多晶铜,探究端面切削加工的各向异性及其所导致的已加工表面晶界高度差现象。在金刚石车刀切削经过晶界的过程中,晶界两侧晶粒由于力学性能有所差异,在切削加工中产生不同的弹塑性响应以及恢复,从而得到不同的加工表面高度。针对晶界高度差现象,从切削加工工艺参数以及刀具几何参数出发,探究端面车削过程中晶界高度差现象的抑制措施。最终综合分析各个因素,实现晶界高度差现象的抑制以及多晶铜超光滑表面的金刚石切削加工。