考虑齿廓偏差的齿轮系统啮合及动力学特性研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:davesd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
齿轮传动系统在工业中被广泛应用于功率传递、转速变换等场合。在真实工作情况下,齿轮的齿廓表面往往会偏离理论齿廓面,从而形成齿廓偏差。齿廓偏差主要来源于轮齿修形(齿廓修形和齿向修形等)、齿面损伤(点蚀、剥落、磨损和胶合等)、制造误差和装配误差(平行不对中和角不对中)等。齿廓偏差会改变齿轮副的接触状态,造成啮合特性的变化,而啮合特性的变化又会进一步地影响齿轮系统的动力学特性。考虑齿廓偏差的影响,本文旨在建立直齿轮副啮合特性分析模型和齿轮-转子系统动力学模型,进而研究齿廓偏差对齿轮副啮合特性和系统动力学特性之间的影响规律。本论文的研究主要从以下几个方面展开:(1)基于轮齿承载接触分析(LTCA)方法,建立修形齿轮副啮合特性分析模型,并利用有限元方法验证了本章模型的有效性(刚度误差小于5%)和高效性。分析了齿廓修形和鼓向修形对啮合刚度、齿根应力和接触应力的影响。研究结果表明,齿廓修形能有效地减缓单双齿交替时刻的啮合刚度与应力的突变;鼓向修形可以有效地补偿不对中量,缓解偏载造成的应力集中。(2)利用二维和三维LTCA方法分别计算了均载和偏载情况下的载荷分配和齿面接触应力。结合所求得的接触应力与Archard磨损理论,建立了齿轮副磨损预测模型。通过对比文献中实测的齿根部位磨损量验证了所建立模型有效性。分析了磨损、齿廓修形、齿向修形和不对中对齿轮副啮合特性的影响。研究表明轮齿修形能有效地缓解不对中带来的应力集中,大幅降低齿根和齿宽边缘位置的剧烈磨损。(3)针对疲劳实验机获得的真实剥落形貌,基于三维LTCA方法,提出了一种考虑三维真实剥落形貌的剥落齿轮副啮合特性分析方法。分别利用所提出的方法、传统接触线长度等效方法和有限元方法,开展剥落齿轮副啮合特性(啮合刚度和接触应力)分析。对比结果表明,所提出的方法能精确计算含复杂剥落形貌的齿轮副啮合刚度和接触应力。(4)基于Timoshenko梁理论和壳理论,建立了柔性齿轮-转子系统动力学模型。在此基础上研究磨损对齿轮动力学的影响,分析了磨损和偏载对齿轮基体柔性体振动的激发机制。研究表明,在非共振区,准静态磨损预测模型与动态磨损预测模型预测结果类似;磨损和偏载产生的时变啮合力矩可以提供轴向方向的激振力,从而激发薄轮缘齿轮的节径振动。(5)考虑三维真实剥落形貌,建立了剥落齿轮系统动力学模型。通过与实验测试的时域、频域以及性能指标的对比验证了所提出的模型的有效性。分析了剥落形貌、剥落位置对振动特性和故障特征指标的影响规律,揭示了剥落所引发的啮合力矩对齿轮基体节径振动的作用机制。结果表明,剥落故障越严重,时域冲击和边频特征越明显;剥落导致的冲击型激励所引发的齿轮基体振动形式为多种节径振动的叠加。
其他文献
磨削加工是通过磨料及磨具切除多余材料的加工方法,其中的去除作用主要源于磨削接触区大量形状、尺寸及位置随机分布的磨粒与工件表面材料的复合热力耦合加工作用。磨削淬硬就是充分利用磨削加工的热力耦合作用,将冶金物理过程与磨削加工技术相结合的一种新型磨粒加工技术,能够使加工工件表层相变产生强化组织层。接触区有效磨粒作为磨削热力耦合过程的输入端,其形位特征(形状、尺寸以及位置)的差异性将会直接影响磨削力及磨削
热轧在线磨辊装置一般应用于热轧生产线精轧机架内,是对轧机内工作辊进行在线修磨的精密装备,其工作运行的可靠性是保障热轧生产线持续、稳定、高效工作的基础。但是,在线磨辊装置处于高温、电磁干扰、水蒸气覆盖、轧机机架振动干扰、工作空间狭小等恶劣环境中,这些因素造成在线磨辊装置工作状态难以直接观察,极易造成突发故障、工作质量不佳等不良效果,这些不良效果如果没有被及时阻止,会造成严重的产品质量问题。为解决以上
本文采用低强度的纯铜钎料来钎焊高强度的45钢和42CrMo钢,接头采用大面积对接的形式,在其他焊接工艺都相同的条件下,通过设计不同的间隙获得了钎缝厚度依次为 0.05 mm、0.10 mm、0.30 mm、0.50 mm、0.80 mm 和 1.10 mm 的 6 组钎焊接头,并对焊后接头进行了微观组织和力学性能分析,详细研究了钎缝厚度对接头组织和性能的影响规律,可得如下结论:(1)钎焊接头中钎缝
圆柱壳具有结构强度高、刚度大和质量轻等优点,在航空航天、海洋工程、管道、大型水坝和冷却塔等各个领域得到了广泛应用。随着圆柱壳在航空发动机、燃气轮机等大型工业系统中的应用越来越多,特别是对于旋转圆柱壳,由于旋转效应的影响,其振动特性变得更加复杂。同时随着环境、工作时间、运行工况等条件的变化,模型参数具有不确定性特征,如螺栓连接的刚度和阻尼等,导致很难通过确定性模型来预测系统动力学特性,因此对其进行动
在热连轧实际生产中,稳定生产过程的板形控制已经达到很高的控制水平,但是在生产过程中存在着规格切换、停轧换辊等大量非稳态轧制过程中,板形的实际控制效果偏低,严重影响成品带钢的板形质量以及成材率。为提高非稳态轧制过程板形的控制精度,本文以某1580mm热连轧生产线为研究对象,在生产过程数据分析的基础上,从负荷分配优化和板形预测两个方面出发,得到了以板形最优为目标的负荷分配策略,并基于深度学习建立板凸度
电解水制氢技术具有简单、原材料丰富、绿色环保、制备的氢气纯度高等优点,是理想的产氢技术。传统电解水的催化剂主要为贵金属材料,其价格昂贵且储量低,极大的限制了工业电解水制氢的发展。现有催化材料多数是单功能催化剂,在同一电解质中同时作为析氢(HER)和析氧(OER)的双功能催化剂,存在活性低、稳定性差等问题。因此开发廉价、高效和稳定的非贵金属催化剂,尤其是HER和OER双功能催化剂成为该领域的重要问题
高铬铸铁材料具有优异的耐磨性和较低的生产成本,被广泛应用于煤矿、国防、冶金和建筑等重要工业领域,但其在冲击较大的工况下耐磨性仍有所不足。近年来,许多国内外学者在高锰、高铬铸铁材料研究的基础上添加W、Mo、V等合金元素,开发出多种高合金耐磨材料。合金元素中,Cr、W、Mo、V等元素为碳化物形成元素,在凝固过程中与C元素作用形成高硬度碳化物,能够有效的提高材料表面的宏观硬度,但这些碳化物同时会割裂基体
镍基单晶高温合金是航空发动机四大热端部件首选的高温材料。随着航空飞机的不断发展,对航空发动机涡轮叶片提出了更高的性能要求。涡轮叶片是航空发动机的四大热端部件之一,对其性能也有着极高的要求,涡轮叶片的主受力方向沿着其[001]取向,但是涡轮叶片在服役过程中受力复杂,不仅受离心力的作用,还要受热应力和循环应力的作用,导致涡轮叶片局部受到的各个方向的应力。另外,在涡轮叶片服役过程中,其晶格发生转动,导致
机械式挖掘机具有剥离力强、工作效率高和施工灵活等优点,因此在露天矿山开采中被广泛的使用。随着中国经济的发展,我国矿石的需求量快速增长。面对矿藏挖掘高效率、低成本的要求,机械式挖掘机需要不断的更新和改进。本文以抚矿集团FWK-4A机械式挖掘机的工作装置为研究对象,对工作装置进行设计和优化,由原来的4.6m3机械式挖掘机改进为5.6m3机械式挖掘机。本文主要研究内容为:(1)首先对机械式挖掘机在挖掘过
热轧无缝钢管广泛应用于船舶制造、油气运输等行业领域,被誉为工业的血管。由于其特殊的高温下穿孔轧制的特点,使得最终得到的组织较为粗大,无法有效提高无缝钢管的力学性能。目前国内外大部分的研究集中于通过热模拟试验来实现钢管的在线热处理以及控制冷却技术的开发,而这两种方法都有其局限性,难以模拟无缝钢管中的切变变形和冷速。因此本研究提出了氧化物冶金+微合金元素添加的方法,拟通过添加高温稳定存在的第二相和微合