论文部分内容阅读
本文针对不同成分的高铬白口铸铁,通过改变工艺条件末研究高铬铸铁基体组织的形成特征;深入分析了工艺条件的变化对奥氏体析出量、稳定性的影响规律及对其腐蚀行为的影响;进一步探讨了高铬铸铁中碳化物的组成特征。研究结果表明:对于含铬量为15%、碳量为2.6%的亚共晶高铬白口铸铁而言,随着冷却条件的改变,凝固组织也发生着显著的变化:在本实验条件下,当浇注尺寸为φ70×100mm时,得到了典型的亚共晶组织:马氏体+共晶组织;在砂型中浇注成尺寸为φ30×100mm高铬铸铁试样,凝固后的组织中初生奥氏体完全消失,得到全部的伪共晶组织。上述两种情况下的高铬铸铁中的初生和共晶奥氏体中固溶的碳、铬量不足以使其稳定地保留到室温,从而发生奥氏体→马氏体的转变;随着冷却速率的增大(浇注金属型中φ20×50mm和水冷φ10×25mm高铬铸铁试样),初生奥氏体的析出量增加,共晶组织的数量减少,并且初生奥氏体中固溶的过饱和的碳、铬量增加。初生奥氏体中固溶的碳、铬量越多,奥氏体越稳定,但同时析出二次碳化物的趋势也越强。当二次碳化物未析出时,C、Cr原子的增加使初生奥氏体稳定性增加,而一旦二次碳化物析出,C、Cr原子的增加导致初生奥氏体稳定性变差。冷却条件的改变带来高铬铸铁凝固组织的改变,相应地必然使其性能发生很大的变化,这在其耐腐蚀性能方面就有较深刻的体现。无论是对于Cr15还是Cr30高铬铸铁,快冷均使得同化学成分下的高铬铸铁的耐腐蚀性能显著增强。快冷使得Cr15高铬铸铁中奥氏体的析出量及其稳定性增强,同慢冷条件下以马氏体为基体的Cr15高铬铸铁相比,其耐腐蚀性能显著提高;对于Cr30高铬铸铁,虽然慢冷和快冷条件下得到的基体组织均为奥氏体,但快冷不仅使奥氏体中固溶的碳、铬量增加、均匀性更好,而且改善了碳化物的尺寸形态,降低了奥氏体基体与碳化物之间的电极电位差,从而从整体上显著提高了其耐腐蚀性能。当高铬铸铁中的含铬量为15%、碳量为3.2%时,凝固组织中初生碳化物和共晶碳化物的类型均为(Fe,Cr)7C3型,但其中Fe、Cr原子的组成比例是有所不同的。仞生碳化物形成温度较高,C、Cr原子扩散供应充分,相应的初生碳化物的心部和边部Fe、Cr原子的组成比例一样,均为Fe2Cr5C3;而对于共晶碳化物,由于其形成温度有所下降,C、Cr原子尤其是Cr原子扩散供应有所减缓,从而使共晶碳化物心部的原子组成比例仍为Fe2Cr5C3,而边部原子的组成比例变为Fe2.4Cr4.6C3。