带耦合电感的三电平交错并联Boost变换器建模与控制研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:haose1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球工业化进程不断加强,目前一些大型电力电子系统如微电网、电动汽车、的输出功率不断升高,已由k W级别提升到MW级别。提高电力电子系统的母线电压是减小高输出功率系统损耗,保证其经济性与安全性的最好做法。目前大型电力电子系统的直流母线已由400 V提高至700 V-900 V,这离不开Si C MOSFET模块的大力发展与三电平Boost变换器电路结构的更迭创新。为了同时满足高输出电压与高输出功率的应用场合,并将变换器的功率密度尽可能提高,本文对含耦合电感的三电平交错并联Boost变换器其进行了状态空间建模与控制系统的研究。本文首先分析了含紧密耦合电感的三电平交错并联Boost变换器的电路拓扑结构,并详细分析了其在两相交错控制下的12个工作状态,建立了每个状态的工作模型。此两相交错控制方法以Si C功率开关器件在每个周期的不完全导通换取流经耦合电感总电流频率的极大提高,使得电路中耦合电感的取值最小化。其次本文基于一些电路的基本假设,提出了简化的建模方法,对三电平交错并联Boost变换器的状态空间模型进行化简,得到小信号模型与输出电压输入电流对占空比的传递函数,并用时域仿真与频域仿真结合的方式对传递函数进行了验证。接下来本文基于零极点消除法与Bode图分析法对三电平Boost变换器进行的电压外环电流内环PI控制器参数的设计,先设计电流内环后设计电流外环,并基于PLECS平台对双闭环参数进行仿真验证。最后本文搭建了三电平Boost变换器的样机,对简化建模方法得到的传递函数结果与双闭环PI参数结果的有效性进行了开环实验与闭环实验验证。本文对含耦合电感的三电平交错并联Boost变换器进行了建模以及控制系统方面的研究,此变换器可以适用在高输出电压、高输出功率以及高功率密度场合,其简化建模方法能减少繁琐的状态空间推导计算过程,双环PI控制系统能保证其稳定运行。本文的研究结果为更高输出功率的应用提供了研究基础。
其他文献
感应电机无速度传感器矢量控制系统由于其低成本、高可靠性与易维护等优点,被广泛应用于国民生产的各个领域。然而感应电机无速度传感器矢量控制系统在低同步转速下的不稳定问题,限制了其可靠运行范围,带来巨大安全隐患,一直是工业应用与学术研究的主要难题。首先为满足感应电机无速度传感器矢量控制系统宽速域运行的稳定性要求,本文通过虚拟电压注入法解决系统低同步转速下的不稳定问题。不同于传统的信号注入法,虚拟电压注入
学位
磁悬浮轴承是利用电磁力对转子进行悬浮的一种支承装置,可以对支撑特性和转子动力学行为进行主动控制,是高速旋转机械中的理想解决方案。功率放大器作为磁轴承的核心部件,其性能提升对磁轴承系统优化有重要意义。本文主要对磁轴承系统中以功率放大器为主的关键部件进行了研究,以减少成本、优化性能、提升可靠性,并研发了以磁轴承结构为核心的电磁力加载装置。本文首先对磁悬浮轴承系统进行建模,对其电磁机构、控制系统和功率放
学位
近年来碳化硅(Silicon Carbide,SiC)金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)凭借其高压、高温、高频、高效的优势成为研究的热点。串联是解决其电压等级不足的主流思想,而不均压是限制串联广泛应用的主要原因。本文针对有源驱动延时均压控制方式,就SiC MOSFET串联均压模型、控制策略
学位
高功率超宽带微波源要求输出脉冲的上升时间在亚纳秒范围内,高压亚纳秒开关是其关键技术之一。快速离化晶体管(Fast Ionization Dynistors,FID)是基于延迟雪崩击穿现象的新型两端半导体器件,其导通时间小于1ns,能够满足高功率超宽带微波源的应用需求。为了解决FID器件国产化以及器件开通原理尚不明确的问题,本文在FID器件的导通机理研究、二维数值仿真模型的建立、器件芯片结构参数设计
学位
碳化硅(Silicon Carbide,SiC)绝缘栅双极型晶体管(Insulated-Gate-BipolarTransistor,IGBT)器件因其材料的优势而具有更快的开关速度和更高的阻断电压,但同时也给驱动电路设计带来了更大的挑战。对于柔性直流输电系统几百千伏的直流母线电压,单只器件难以满足耐压方面的需求,器件的串联使用是一种可行的解决方案。因此,对于各串联器件之间的电压不均衡,同样是一个
学位
随着新能源大规模接入电力系统,局部电网中电力电子设备逐渐占据主导地位,新能源并网电力系统呈现出不同于传统同步机主导电力系统的特性,而我国新能源发电远距离、大规模、高度集中的特点进一步导致局部电网架构薄弱,因此,一旦电网发生故障,即便是浅度故障,系统的稳定运行也将受到较大威胁。作为新能源与电力系统的接口设备,并网变换器暂态过程中能否保持稳定运行直接影响着电力系统的稳定性。而并网变换器作为功率传输器件
学位
由于模块化多电平换流器(Modular Multilevel Converter,MMC)具有高度模块化、波形质量高、运行损耗较低等优良特性,基于MMC的柔性直流输电技术在我国电力系统中得到了广泛应用。近年来,国内多个柔性直流输电工程在运行或调试过程中出现了高频振荡现象。现有工作针对MMC小信号建模和系统高频振荡机理展开研究,并提出了相应的抑制策略,但现有文献采用较多的简化阻抗模型在较低频段存在一
学位
模块化多电平变换器(Modular Multilevel Converter,MMC)具有波形质量好、模块化程度高等优势。电容作为MMC子模块中最大的储能元件,降低子模块电容电压波动对提高MMC功率密度,实现MMC轻型化具有重要意义。在降低子模块电容电压波动的方案中,飞跨电容MMC(Flying-Capacitor MMC,FC-MMC)以其良好的性能得到了广泛的关注。利用SiC MOSFET低开
学位
随着传统化石能源的消耗与生态环境恶化,针对风能、太阳能等可再生能源的开发与利用的新能源发电得到日益重视。并网变换器作为将新能源连接至电网的关键接口设备,影响着发电系统的稳定运行。而我国新能源发电大规模、高集中度和长距离的特征使得电网呈现出弱电网特性,电网强度的降低加剧了电力系统稳定性问题。当电网发生故障时,并网变换器存在失稳脱网风险;而深度故障下并网变换器将会切换控制策略,使得稳定性问题更加复杂。
学位
传统硅基半导体器件,受限于硅材料的物理特性和制造工艺,已无法满足电力电子变换器对高频和高功率密度的需求。碳化硅(Silicon Carbide,SiC)金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)作为第三代宽禁带半导体器件的代表,具有高开关速度,耐高温,低导通损耗的特点,是未来电力电子变换器的优先选
学位