大面域屋面无线水位监测系统研发及其应用

来源 :浙江大学 | 被引量 : 0次 | 上传用户:q520fang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国国民经济的高速发展和综合国力的提高,土木工程领域不断创造出越来越多具有大面域屋面的建筑结构,此类结构汇水面积大,当积水荷载过载时,将对屋面结构的安全性造成影响,同时屋面积水也会引起结构室内的渗漏,影响建筑的使用功能。因此,本文针对大面域屋面,研发了一套无线水位监测系统并应用于北京大兴国际机场航站楼屋面。主要研究成果如下:(1)针对大面域屋面水位监测测点多,面域大和供电困难等特点,设计了一套无线水位监测系统。为降低水位监测系统的整体能耗,引入雨量预警机制,采用光学雨量传感器,当雨量达到阈值后,开启水位监测,同时基于超声波的测距原理研发了水位传感器设备。为解决大面域屋面的通讯距离问题,采用Lo Ra+4G的无线通讯网络,将低功耗的Lo Ra无线通讯技术和远距离的4G广域网技术相结合,拓展了无线水位监测系统的通讯区域,减少了数据回传时间,降低了整个无线通讯系统的负担。进一步地,提出了基于雨量预警机制的水位自动采集模式,实现了大面域屋面水位的智能化采集。(2)对无线水位监测系统的性能进行测试研究,探究了不同波特率下Lo Ra局域网的有效通讯距离,并由此确定4G路由接力节点和水位传感器测点布置时的最优位置。分析了水位传感器在静态测距和动态水位测距过程中存在的影响因素,针对影响因素设计试验并探究各因素的影响,通过试验分析验证了该系统的有效性。(3)对水位数据进行降噪处理和可视化展示。通过基于EMD的小波熵阈值去噪方法对水位数据降噪,并与EMD去噪方法对比分析,验证了该算法的有效性。此外,为更直观的展示降噪后的水位数据,开发了可视化通用性程序,软件由模型输入、数据处理与结果输出三部分模块组成,可绘制水位云图并上传至监测云平台动态显示。(4)以北京大兴国际机场航站楼屋面为实测对象,对其工程概况和传感器测点布置方案进行介绍。阐述了无线水位监测系统在机场航站楼屋面的工作流程,通过雨量预警机制和水位报警机制,实现了机场航站楼屋面水位监测的智能化管理。对实测水位数据进行处理与分析,验证了大面域屋面无线水位监测系统的可行性和有效性。
其他文献
<正>呼吸道与消化道一样,是人体与外界相通的开放性通道。鼻咽部处于联系鼻、耳、口、呼吸道的枢纽位置,是许多微生物定植的主要部位,具有较高的微生物群落多样性。鼻咽部微生态在局部免疫功能的调节和抵御外来病原菌的定植入侵方面具有重要作用[1-2]。其异常改变也与多种呼吸系统疾病的发生发展密切相关[3-4]。全面认识儿童鼻咽部菌群分布特征以及其在病理状况下的变化规律,可以从微生态的角度为诊治和预防呼吸系统
期刊
膨润土常作为一种重要的屏障材料,广泛应用于固体废弃物堆填场。堆填场渗滤液及部分地区地下水中存在高盐物质,在浓度差的作用下高浓度的电解质溶液会向膨润土屏障内部逐渐侵蚀,造成其渗透性、压缩性的变化,这些工程特性是屏障材料及地基土设计施工时的重要特性,因此有必要对电解质孔隙溶液在高膨润土含量土体的化学-力学特性中所起的作用进行系统性的认识。目前国内外主要通过直接对受污染土进行测试来研究电解质孔隙溶液对黏
学位
海洋基础结构(桩基、锚、管道等)是实现海洋能源、空间等开发利用的关键设施。海洋基础结构在施工与服役期间,与海床土体之间的相互作用很大程度上取决于土体-结构界面处阻力的发挥特征。特别地,对于桩基与锚基础的安装与上拔阻力,以及管道的铺设牵引阻力,软土与钢界面的剪切阻力是其重要组成部分。为了减小软土-钢界面的剪切阻力,本文通过电解水的方式,在软土-钢界面生成微气泡,改变界面构成部分,从而达到减阻效果。本
学位
大量铁路、公路、机场、临港工业基地、码头物流中心等重要基础设施分布在软土地区,尤其随着“一带一路”倡议及全球产业链重分布,建设项目量大面广,需满足可靠、高效、低碳、环保等要求。针对排水板真空预压联合管桩加固软土地基工法的不足,如施工周期长、沉桩引起的挤土效应显著、桩周土孔压消散缓慢等。本文基于课题组发明专利提出适用于软土地基的开孔管桩真空固结技术,结合了刚性排水桩和真空排水固结法的优势,基本原理是
学位
圆角弧边三角形截面高层建筑与普通三角形建筑相比,具有更优越的平面效果和气动性能,在实际工程中有着较为广泛的应用。为取得更佳的建筑与结构竖向效果,对超高层建筑还常使用立面退台或渐进收缩的方式。然而在强风作用下,这些立面改变方式对建筑风荷载及结构风致响应的影响如何,目前并不十分清晰和明确。鉴此,本文以圆角弧边三角形截面高层建筑为对象,研究不同退台及立面收缩方式对其风致响应及风压分布特性的影响效应。本文
学位
淡水资源短缺是当今世界面临的一个重要问题,并且随着人口数量增长,人类生产生活方式的变化,淡水资源短缺问题日渐严峻。太阳能界面水蒸发,作为一种利用清洁能源获取淡水的技术,成为解决淡水资源短缺问题的可行性方案。因此,通过对太阳能界面蒸发材料进行合理设计和性能改善,实现高效太阳能水蒸发,是一项有意义的研究课题。本文以Pickering乳液凝胶模板法制备的多孔材料为基础,通过亲水改性和表面修饰,研制了一种
学位
伴随国家“交通强国”战略实施,我国正大力兴建交通基础设施。快捷、方便、高效、节能的交通体系,在满足我国新时代发展交通运输需求的同时,也将为我国实现“碳达峰”、“碳中和”战略发挥重要作用。持久耐用、就地取材的粗颗粒土是路基建造过程中被广泛采用的材料之一,当前对交通荷载、温度变化、盐分侵入等因素作用下路基性能劣化机理尚无清晰认识,路基过大变形、失稳等灾害频发。颗粒材料因颗粒沉积排列方式不同而呈现各向异
学位
随着我国城镇化率的逐步提升,各类工程施工过程中的副产品——建筑垃圾也随之增多,不少城市正面临或即将面临“建筑垃圾围城”的困扰,对此,党和国家高度重视,强调研发建筑垃圾资源化利用新途径、提高整体资源化利用率是摆脱困境的关键。工程泥浆作为产量最大的建筑垃圾之一,因含水率高、处理难度大,相关资源化利用研究及应用相对较少,外运填埋依然是其主要处置方式,因其不可持续性造成了大量的资源浪费,也产生了一定的安全
学位
天然气水合物作为一种新兴能源,具有大储量、高能效和低污染等优点。我国南海天然气水合物资源储量巨大,进行可持续开发和利用可望有效缓解能源短缺问题。水合物开采往往诱发海床坍塌和开采设施工程灾变,研究水合物分解过程中储层沉积物变形机理,优化降压开采技术方案提高产气效率,对于支撑天然气水合物安全高效开采、保证能源可持续发展具有重要意义。本文首先进行水合物降压开采超重力实验装置的研发和优化调试,然后开展系列
学位
沿海地区广泛分布着海相饱和淤泥质软黏土,在长期循环荷载作用下易发生沉降,引起上部结构破坏,造成巨大的经济损失。控制软黏土地基沉降是工程中亟待解决的关键问题。明确软土在动载作用下的变形特性和微观机理对软土地基在长期循环荷载作用下的沉降控制具有重要意义,因此,需要进行系统的基本理论研究。本文以杭州海相饱和原状软黏土为研究对象,围绕微观结构参数与累积塑性应变的相互关系开展了宏微观试验研究,主要研究工作及
学位