承压含水层井水位对循环荷载响应的水动力过程研究

来源 :中国地震局工程力学研究所 | 被引量 : 0次 | 上传用户:hxzhou618
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
循环荷载作用下含水层水动力过程的物理机制解释是当前地震地下流体研究和岩土工程稳定性研究的热点问题之一,其核心问题在于含水层孔压积累和消散的定量计算模型的完善和影响因素的分析。然而由于缺少场地条件下含水层内部观测数据,含水层孔压变化很难直接观测。封闭良好的承压水井能灵敏地反映含水层内应力应变状态的变化,因此利用承压井水位波动反映含水层孔压积累和消散过程具有理论价值和实际意义。这一研究工作既能一定程度上解释地震波引起井水位变化的物理机制,又能为岩土工程稳定性研究提供理论参考。
  本文以承压井水位对地震波响应现象为研究背景,系统分析了承压井水位对循环荷载响应的水动力过程,结合Biot固结理论、流体力学理论和渗流动力学理论,建立了反映承压含水层井水位对循环荷载响应的含水介质应力应变-渗流-井流耦合的水动力过程理论模型。该模型体现了含水介质动应力与地下水渗流动力过程的耦合过程以及地下水渗流与井流耦合过程,以场地震例和室内振动台实验为背景,对水动力过程进行了系统研究。论文取得成果如下:
  (1)以承压井水位对地震波响应为背景,提出了含水层孔压及承压井水位对地震动应力响应概念体系。通过全面分析承压井水位对循环荷载响应的水动力过程,提出了循环荷载、含水层形变、孔隙压力变化和井水位变化4个层次,弹性力学响应、渗流力学响应和水力学响应3个环节以及流固耦合、渗流-井流耦合的2个耦合过程。
  (2)基于多孔介质弹性力学平衡和渗流力学原理,建立了水平循环荷载作用下承压含水层孔压动态响应方程。水平循环荷载是触发地下水渗流的重要外动力因素,而地下水渗流产生的渗流力和循环荷载产生多孔含水介质动应力共同作用引起了含水层孔隙压力的变化。基于此,孔压的动态响应方程应是渗流条件下渗流力平衡模型和动应力作用下含水介质应力-应变力学模型的耦合模型。在探讨渗流力与循环荷载作用下含水介质渗流与变形机理的基础上,考虑水平荷载引起岩土体介质不对称性变形特征,拓展了Biot固结模型,建立了水平循环荷载下承压含水层孔压响应理论模型。
  (3)以流体力学理论为基础,建立了以井中水柱为研究对象的井流动力学方程和井流运动方程,并分析了井结构参数对井流动力学方程的影响。本文概化了井流动力模型,在简化了水流从含水层到井的交互流动过程中的水头损失和井储效应的基础上,重点关注了力的作用引起井中水流的运动特征。
  (4)建立一个以井为中心的井-含水层井流-渗流系统,通过井边界条件耦合渗流和井流模型,重新构建了含水层渗流动力条件下的井水位对循环荷载响应的动应力-渗流-井流耦合数学模型,并通过对数学模型求解,得到含水层超孔压变化与平均动应力变化的关系和承压井水位与动应力之间的定量关系,将过去的散点模型进行耦合成为连续的水动力模型,对水动力过程解释更加完整。
  (5)开展了井-孔隙承压含水层系统对单一频率正弦波荷载的振动台实验,基于实验结果和分析,揭示了渗流与静水两种不同水动力条件下承压井水位对振动响应均出现振荡上升、振荡下降和振荡型特征规律;实验中含水层孔压变化是动应力与渗流共同作用的结果,进一步验证了理论方程建立的合理性。同时,通过定量分析,阐明了动应力作用下影响承压井水位变化的因素的主次关系。
其他文献
近年来,云盘凭借其高可用、高可靠、低成本以及可定制化的特点,在云块存储系统中的应用越来越广泛。云块存储系统后端有很多存储仓库,系统通过一定的分配策略将新云盘分配到最合适的仓库来供用户使用。随着云计算和互联网技术的快速发展,用户数据量显著增长,对云盘的分配策略带来了巨大的挑战。由于新云盘在分配前的负载信息未知,现有的云盘分配策略仅考虑存储容量维度,从而导致云块存储系统多维度资源(例如容量、IOPS、
学位
随着多媒体数据的爆发式增长和云存储技术的迅猛发展,海量云端数据呈现出多模态混合并存的特性,如何以内容语义为标准对其进行智能化管理和跨模态分析成为传统云存储系统面临的新挑战。一方面,数据体量的增加和模态之间的差异导致有效数据的检索难度陡然提升。另一方面,现有存储系统中,数据无法建立以内容语义为标准的标签与关联。因此,根据用户需求和内容相关性智能化检索云端多模态数据是当下亟待解决的热点问题。  目前,
大脑作为中枢神经的主要组成部分,是生物体最复杂、最重要的器官之一,其结构和功能机制是当前脑科学研究领域的热点和难点。脑科学研究者们从高分辨生物图像中重建出神经元、血管、核团形态并进行计算和分析,由于形态学研究需要大量数据,数据共享变得尤为重要。然而,目前的数据共享方式局限于文件、文字、图片、视频等静态信息,需要用户下载或者拷贝数据并使用本地软件才可进行形态观察,浪费大量人力与物力。此外,现有的可视
为了处理大量的实时数据流,现有的分布式流处理系统遵循数据并行的原理,并利用不同的数据分区策略。其中一对多分区策略(例如,ApacheStorm中的广播分组)在各种大数据应用程序中起着至关重要的作用。对于一对多数据分区,上游处理实例将生成的元组发送到大量的下游并行处理实例。现有的分布式流处理系统通常基于面向实例的通信来实现一对多数据分区,其中上游实例将数据元组分别传输到不同的下游实例。但是,多个下游
网络功能虚拟化(Network Function Virtualization,NFV)通过虚拟化技术,将传统的基于专用硬件的网络功能,以软件的形式(虚拟网络功能)部署在通用服务器上,然后按需链接对应的虚拟网络功能形成服务功能链,对用户的请求进行服务。然而由于通用服务器的处理能力有限等原因,NFV的性能是一个亟待优化的问题。传统的基于各种先决条件和模型的性能优化方案,在实际网络环境中有很大的限制性
图计算在现代社会中的应用越来越广泛,例如在社交网络,生物信息学和信息网络中均有大量应用。由于图结构的不确定性、幂律分布以及复杂依赖关系等特性,图计算在使用冯·诺依曼体系结构的通用处理器(Central Processing Unit,CPU)上的处理效率远未达到理想水平。一方面,由于图的不规则性,导致内存访问的时间过长进而引发流水线插槽无法正常地回退,后续的指令无法正常进入流水线插槽执行。因此,每
学位
由于某些突发事件,例如社交网络上的热门新闻或特价商品销售,而产生的突发流量可能会导致后端服务器严重的负载不均衡问题。迁移热数据作为实现负载均衡的标准方法,在处理这种意外的负载不平衡时遇到了挑战,因为迁移数据会进一步降低已经过载的服务器的处理速度。  网络功能虚拟化是一种新兴的技术,可以灵活地将网络功能以软件的方式部署在通用服务器上。PostMan基于网络功能虚拟化设计,作为热数据迁移的替代方法,可
随着云计算技术的进步和成熟,从小型初创企业到行业巨头都选择将业务部署到公有云平台上。公有云服务提供商在全球多个地区建立了数据中心为附近用户提供低时延的资源租赁服务。在这些跨域集群上部署的服务不断产生大量数据,分析这些数据对于公司或组织作出各类决策具有极高价值,这类横跨多个跨域数据中心进行数据分析的作业称为跨域数据处理。如何高效、低成本、及时地开展跨域数据处理变得至关重要。  跨域数据处理中的主要问
在目前国内的建筑理论的现行认识中,对于巴洛克建筑的梳理、解释、定位等问题尚处于一个较为边缘状况下①。对于波洛米尼的研究则是凤毛麟角,综合性视角下的建筑理论研究数量稀少,在观察到这一现象后,本文进行了一系列的发问与探究。  本文叙述的前提在于对这一时期的整体观察:即观察到这是一个重新定义的时代,各个行业与概念在进行着自己范围与边界的重新划定,这意味着旧有的边界被打开,相互之间范围的被重新确定。特别是
追本溯源,韧性(Resilience)是物理学领域材料科学中的一个基本概念。20世纪80年代,有学者首次将韧性概念与自然灾害联系起来。21世纪初期,韧性城市这一概念首次在联合国可持续发展全球峰会上被提出,随后,对国家韧性、社区韧性、工程系统韧性等方面的研究逐渐兴起并发展至今。2018年美国国家科学院国家研究委员会等机构编撰系列丛书,详细阐述灾害韧弹性概念。目前对工程系统地震韧性的研究范畴包括建筑结
学位