超黑碳纳米管复合涂层制备方法及红外发射性能机理研究

来源 :杭州电子科技大学 | 被引量 : 0次 | 上传用户:a20090907
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
红外高发射率涂层在遥感温度测量、气候观测、痕量气体探测等领域有重要的应用价值。为了保障在轨测量的精度与稳定性,星上黑体需要对热红外波段卫星遥感器持续定标,因此提高黑体辐射源的性能对于卫星遥感器的辐射定标具有重要意义。针对星上黑体而言,红外全谱段高发射率涂层是提高黑体辐射源性能的重要因素,然而目前应用于航空航天领域的涂层材料发射率均在0.96及以下,难以满足高精度的测量要求。垂直阵列的碳纳米管(CNT)是目前已知的红外发射率最高的材料,其易于捕获光线的阵列结构以及碳纳米管固有π键结构,使得CNT从可见光到远红外都具有类似于理想黑体的红外辐射特性。但碳纳米管机械强度低、生长工艺苛刻,制备的涂层维护难度大,这些因素都严重制约了CNT在大尺寸及复杂结构表面的应用。为了将碳纳米管材料应用在红外遥感领域,得到发射率较高的涂层,提高卫星遥感器的定标精度,本研究尝试以喷涂法为基础,探索一种实用化的碳纳米管复合超黑涂层的制备工艺,并分别对基于有机物及过渡金属氧化物的黑体涂料进行了不同比例碳纳米管的掺杂,同时开发多层喷涂工艺并制备了一系列超黑碳纳米管复合涂层样品。本研究使用控制环境辐射的方法对涂层的红外发射率进行测试,利用辐射温度计(TRT)对基于有机物的黑体涂料在8~14μm波段的法向发射率进行了测试,结果表明掺杂5‰质量比多壁碳纳米管的复合涂层发射率可由0.965提升至0.979。利用傅里叶红外光谱仪对复合涂层在8~14μm的法向光谱发射率进行了测试,实验结果表明在全波段内涂层的发射率均有提升,且10μm附近的波谷得到抬平,此波段内发射率的均匀性得到了有效改善。从光谱发射率反算得到的8~14μm的波段发射率,也与TRT所测数据有很好的一致性。从扫描电子显微镜(SEM)照片中可以看到,经过设计的涂层具有利于捕获光线的多孔状微结构,入射光线在微结构中的反射次数得到增加,分布在涂层颗粒上的碳纳米管也为涂层材料对光线的吸收做出了贡献,同时复合涂层的粗糙度也与碳纳米管的比例正向相关。在对有机涂料进行高比例的碳纳米管掺杂以及对无机涂料进行较低比例碳纳米管的掺杂并进行表征后,实验表明涂层的表面形貌与粗糙度是影响其发射率表现的重要因素,在保证涂层具有良好表面微观形貌的前提下,才能显现出碳纳米管的掺杂对涂层发射率的正面影响。综上所属,在不破坏涂层表面形貌的前提下,碳纳米管掺杂可有效提升涂层的红外发射率,经过多层喷涂工艺优化和表面微结构设计,复合涂层的红外发射率可更进一步的提高。
其他文献
随着科技的发展,大量电磁设备应运而生,带来了电磁污染和危害,为了衰减电磁波、降低危害,电磁波吸收材料逐渐成为人们的科研热点。传统的吸波材料难以满足轻量化的生产要求。因此,研制具有“薄厚度、轻质量、宽频带、强吸收”性能的吸收材料成为了时代需求。在吸波材料中,单一材料由于损耗机制单一、吸收频带窄及密度大等缺点难以同时满足“薄、轻、宽、强”要求。而复合型吸波材料不仅能够保持各自组分的优点,还能弥补缺点。
学位
如今,无线通信技术已渗透到世界的每个角落,深刻地影响着社会的各个领域,出于对高速率低时延通信的需求,通信技术发展的方向从不断枯竭的低频段转变为更高的频段,比如毫米波。同时,对于成本、功耗、性能、集成度的综合考量,让CMOS工艺成为研究热点。下变频混频器是通信系统接收链路的重要组成部分,信号频率变换的好坏与否对整个系统性能有着很大的影响,因此深入研究CMOS工艺下毫米波频段的下变频混频器有着重要意义
学位
随着石油工业、机械加工、食品行业的不断发展,产生了大量的“水包油”(O/W)乳液与“油包水”(W/O)乳液。这些乳液通常十分稳定,若不加以及时处理,不仅会造成油滴资源的浪费,还会造成严重的环境污染。磁分离法工艺简便、高效、经济,因此备受关注。为此,本论文制备了三种不同类型的磁性纳米粒子,通过表面电荷与亲疏水性调控,均表现出了优异的油水分离能力与循环使用性能。具体研究内容如下:(1)通过共沉淀法制备
学位
随着网络通信、传感测控和智能监控等科学技术的进步,电梯监控系统发展逐渐由传统人为候监向全自动在线监控方向推进。当前国内电梯监控设备存在安全性低、稳定性差、功能性不足的问题,这极大地降低了监控系统的安全性能。然而随着电梯各种安全事故的频繁发生,人们对电梯的安全可靠性有了更高的诉求。故而有必要研发一套多功能智能化电梯运行安全在线监控系统,实现对电梯作业的实时监控保护,最大程度保障电梯运行安全以减少安全
学位
近年来,科研工作者致力于探索和开发用于光催化的各种潜在高效的新型光催化剂材料。除了MoS2、In2S3和Zn S等金属硫化物备受关注外,以MoSe2、SnSe、CuSe、Zn Se等金属硒化物也走进研究者的视野。硒比硫具有更大的原子半径,这使得它比硫更具金属性,并且电离能更小,从而导致金属硒化物的带隙更窄和电子空穴分离更好。然而,新的问题又出现在眼前。一方面单相光催化材料不能有效地抑制光生电子和空
学位
一直以来,钙钛矿结构锰氧化物因其所具有的丰富物理化学性能,如磁相转变、磁电阻效应、磁热效应等,科研工作者对其研究从未中断过。另外,由于其多晶样品制备方法相对简单安全,对环境因素的要求较低,进一步促进了研究的推广与实际运用。本论文采用传统固相反应法制得多晶钙钛矿化合物La1-xBaxMn O3,主要围绕晶体结构、磁相、磁电输运性质和磁热效应展开研究,深入探索Ba元素掺杂对稀土钙钛矿锰氧化物的物理性能
学位
与光电探测技术所关联的材料及器件方面的研究长久以来都处于科研领域的前沿,如今微型化、高性能的自驱动光电探测器在现代信息化社会更是受到前所未有的关注。鉴于二维WSe2为代表的TMDCs拥有的超薄特性且带隙可调等优点及层间通过范德华力互连的特殊物理结构,因此可直接堆叠范德华异质结以实现原子级的功能集成,由此获得的光电器件在下一代电子及光电子器件等领域必将展现出巨大的发展潜力。本文主要以WSe2和Sn
学位
目前,铁氧体永磁和稀土永磁被广泛用于生产生活。稀土永磁材料具有优良的综合磁学特性,在电动汽车、风力发电等方面具有举足轻重的地位。但是,储蓄数量少,原料价格昂贵,开发成本高等因素限制了其发展。铁氧体永磁整体磁性能远不达稀土永磁,难以满足当前工业对高性能、小型化、轻量化的需求。Mn-Al、Mn-Bi、Mn-Ga是一种总体磁学性能介于Re-永磁和铁氧体永磁之间的无稀土永磁体。此材料因其原材料价格低廉,开
学位
光催化分解木质纤维素制氢气技术,利用太阳能为驱动力将木质纤维素生物质转换为氢气,不仅提供了一种有效的氢气制备途径,还为可持续储存和利用太阳能提供了新的思路。当前,开发高效的光催化剂是太阳能光催化分解木质纤维素制氢的关键难题,也是当前太阳能光催化分解木质纤维素制氢的一个巨大挑战。本论文围绕开发高效的光催化木质纤维素制氢体系,设计、制备了2D-2D构型的异质结光催化剂,通过在异质结光催化剂界面构建二维
学位
室内植物照明技术一直是热门的研究话题。近年来,荧光转换发光二极管由于其发光波长及发光强度的可调控,被认为是传统发光二极管的有效替代方案。由于缺乏高效的荧光粉,因此用于植物照明的深红和远红pc-LED的技术还不成熟。而锰离子掺杂钨酸盐荧光材料具有与植物色素吸收光谱匹配的可调谐发光、制备成本低廉以及化学稳定性好的优势,成为了本论文的首选研究目标。本论文选择Ba2Mg WO6和Ba2Ca WO6作为Mn
学位