微弱电流调理放大芯片的设计与测试

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:PLF119
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着半导体技术的快速发展,微弱电流检测技术已经广泛应用在众多领域,对微弱电流检测技术的的分辨率要求也越来越高。高分辨率意味着可以检测更微弱的电流,很多领域产生的微弱电流已经达到亚pA级别,这给微弱电流检测技术带来了很大的挑战。为了应对微弱电流检测技术面临的挑战,设计一款具有高分辨率的微弱电流调理放大芯片具有重要意义。为了实现亚pA级别的电流分辨率,本文在传统的电荷积分器基础上构造微弱电流检测方案,提出了一种低噪声电流放大电路。微弱电流检测采用电荷积分器作为前端方案,以减小热噪声的影响,为了抑制和消除电荷积分器电路中的kT/C噪声,采用相关双采样技术。为了研究噪声对电流分辨率的影响,分析放大器电路中的噪声传递过程和电路非理想特性,引入Allan方差来评估电流的分辨率。待测信号采用单端电流输入方法,为了解决单端开关电容电路存在的电荷注入和时钟馈通问题,设计伪差分放大结构,并添加额外的输入共模反馈电路。微弱电流信号要求放大器具有较高的增益,为了达到100dB以上的增益,我们采用增益自举技术来提升增益。为了减小输出级尾电流管的噪声贡献,采用源级退化(source degeneration)技术,在这四个尾电流管的源端加上源退化电阻。分析微弱电流信号的特性,设计测试方案和硬件电路,完成原理图和PCB绘制,并采用屏蔽措施减小外部电磁干扰。测试电路前端采用光电二极管产生微弱电流信号,微弱电流信号送入待测芯片产生差分电压信号,接着电压信号经过调理放大电路,实现同相放大和差分转单端,最后输出到信号分析器。对测试原理及步骤进行详细说明,从信噪比和艾伦方差两个方面进行测试,并分析测试结果,计算电流分辨率。采用SMIC 0.18μm CMOS工艺完成整体微弱电流调理放大芯片的设计,在Cadence软件里面完成电路的设计和仿真。经过后仿真分析,主运放的增益达到115.1dB,等效输入噪声为17.78nV/(?),整个芯片面积为956μm× 1056μm。基于信噪比和艾伦方差对芯片进行电流分辨率测试,测试结果表明,基于信噪比测试的最小电流分辨率为0.036pA,基于艾伦方差测试的最小电流分辨率为0.035pA,两个测试结果都达到了亚pA级别。
其他文献
电致发光变色材料是有机光电功能材料领域新兴研究方向,在信息显示、信息安全和数据传输等领域具有极大的应用潜力,但是由于其发展相对缓慢且受材料种类和设计策略的限制还未应用于商业化。现有的电致发光变色材料多为有机小分子荧光染料和聚合物,其电响应单元常通过氧化还原电子转移猝灭材料发光。相较于纯有机材料荧光发射,磷光铱配合物由于其高效的发光效率、易调节的发射波长和丰富的激发态性质等优点,能够实现更丰富的发射
学位
基于6G建立空-天-地-海一体化的愿景,以及无人机(Unmanned Aerial Vehicle,UAV)的高移动性、易于部署且以高概率建立视线链路的优点,无人机被广泛应用于辅助无线传感器网络(Wireless Sensor Network,WSN)通信领域,以解决传感器网络能量有限问题以及突破其能量消耗对无线传感器网络性能限制的瓶颈。目前针对无人机辅助无线传感器网络通信的相关内容研究十分丰富,
学位
近年来,细菌感染引发的疾病导致全球公共卫生问题层出不穷,每年因细菌感染所导致的经济损失就高达数十亿美元。细菌感染不仅阻碍了社会经济的发展,更对人类的生命安全造成了威胁。因此,如何实现细菌感染源的早期发现以及快速确定细菌类型成为应对细菌感染的有效防治措施。细菌检测作为预防细菌感染的有效手段在环境监测、食品安全和医学诊疗等领域受到了人们的广泛关注。传统检测方法具有检测周期长、检测程序复杂、对样品要求高
学位
近年来,受“互联网+物流”强大力量的影响,公路运输需求越来越大,随之而来的问题也越来越突出。公路货运市场不仅集中度低、交易效率低,而且小物流企业数量多且无序,货运司机超过了3000万人,承担着超过70%的总货运量。因此,信息不对称和失真问题非常严重,这也造成了货找承运人难,承运人找货难的普遍状况,这种交易模式非常不利于货运市场的长期发展。根据相关数据统计,自2014年车货匹配货运平台快速涌现以来,
学位
传统化石能源如煤炭、石油、柴油的大量使用直接导致温室气体、雾霾、环境污染等环境问题,大力发展清洁可再生能源是解决这些问题的重要手段之一。在研发能源存储器件的过程中,钠离子电池、超级电容器、铝空气电池等新型储能设备逐渐走进人们的视野。其中超级电容器以其出色的电化学性能引起了科研工作者的广泛关注。本论文通过固态前驱体法合成了一类具有独特叠层状、片层中存在丰富孔道结构的类方塔状镍基金属有机框架材料,系统
学位
RCr O3表现出极其丰富的磁行为,如低温磁化反转、磁相变、自旋重取向、负磁化行为等,因此得到了广泛研究。离子掺杂一直是一种调控磁性的有效方法。本文采用X射线精细结构(XAFS)技术研究了非磁性离子Ga掺杂的RCr O3(R=Ho、Sm、Lu)体系样品电子结构和局域结构,为磁性机理解释提供了结构数据支撑。1.研究了Ho Cr1-xGaxO3(x=0,0.1,0.2,0.3,0.4)系列样品的XAF
学位
自2018年教育部提出“金课”概念以来,作为五类“金课”之一的“虚拟仿真金课”就备受研究者的关注。虚拟仿真实验为学生提供自主解决问题的仿真实验情境,已逐渐成为促进学生学习、培养学生能力的重要手段,而元认知能力是学生学习能力的重要体现。学生进行虚拟仿真实验学习的过程与学生的元认知活动密不可分。基于此,本研究探讨虚拟仿真实验对大学生元认知能力的影响。本研究在梳理以往文献的基础上将虚拟仿真实验内在特性总
学位
随着数据流量的增长、数据速率需求的提高,第六代移动通信(Sixth-generation,6G)网络除了需要支持高数据速率外,还要确保高吞吐量、可靠性和定制灵活性。而可重构的智能表面(Reconfigurable Intelligent Surface,RIS)是促成这种新的智能无线电环境实现的关键因素,具有功耗低、成本低、配置灵活的优点,可以应用于辅助通信,通过优化反射信号的相移来优化性能。全双
学位
钾资源储量丰富、标准电极电位较低且溶剂化K+在电解液中的迁移率高。故开发高性能的钾离子电池被认为是解决因锂资源短缺导致的价格高涨和弥补储能市场供不应求问题的有效途径。然而,钾离子半径大,在材料中进行固相扩散困难,且离子脱嵌过程易造成材料的结构形变。这导致钾离子电池缺乏具有高容量、高氧化还原电位和良好结构稳定性的正极材料来满足使用需求。研究报道显示,二元铁锰层状过渡金属氧化物正极(KxFe0.2Mn
学位
在量子通信研究中,光子由于其可操作性和高速传输特性而成为主要的信息载体。光量子比特和光子纠缠是量子通信领域的重要资源,在量子隐形传态(QT)、量子密钥分发(QKD)、量子安全直接通信(QSDC)等领域有着广泛的应用。在远距离量子通信中,光子传输损耗是量子通信的一个重要障碍,光子传输损耗导致光子在光纤中的传播随着信道长度的增加呈现指数式衰减。光子传输损耗不仅严重影响量子通信的通信效率,限制通信长度,
学位