论文部分内容阅读
水库型滑坡复杂的水动力环境与特殊的水利工程结构决定了该类滑坡具有巨大的影响性、破坏性和灾害性。特别是重大水利工程,由于其蓄水影响范围大和水位涨落动力强等特点,其所形成的水动力环境对库岸边坡稳定性的影响更成为该领域面临和必须研究解决的重大水动力环境问题。因此,如何依据水库型滑坡水动力灾变机理与规律,建立与其相适应而有效的监测预警参数与模型,已成为滑坡监测预警与防治领域急需研究和解决的重大课题之一。其研究不仅对三峡工程库区滑坡,而且对我国类似涨落水环境动力条件的大型水利工程库区滑坡的科学预测与防治将具有十分重要的理论价值和现实意义。
本文依据水库型滑坡的变形与失稳的动因与机理,将滑坡复合水加卸载动力效应-坡体参数弱化效应-稳定性演化规律视为一个完整滑坡分析系统进行交叉耦合研究。研究了水库型滑坡复合渗流场变化规律,以及复合水加卸载动力效应与弱化效应对边坡稳定性的影响,建立了水库型滑坡复合水动力加卸载响应比预测模型。以此为基础,运用损伤力学的基本原理,建立了水库型堆积层边坡失稳的判据准则。上述研究成果可为水库型堆积层滑坡的预测预报与防治提供理论依据。其主要研究成果如下:
(1)根据三峡水库的调度方案和降雨特点,确定了不同渗透系数、库水变化速率、降雨强度的渗流场工况,并分析了不同工况库水与降雨联合作用下其滑坡坡体浸润线与孔隙水压力变化规律,对不同岩性渗透系数条件的坡体渗流动力变化规律进行了定量评价:1)当k≥100m/d(坡体岩土体岩性为砂砾、砾石)时,坡体的水动力表现为浮托减重(静水压力)效应;2)当1m/d<k<100m/d(坡体岩土体岩性为粉土、细粒土质砂)时,坡体的水动力表现为浮托减重+渗透力(混合)效应;3)当k≤1m/d(坡体岩土体岩性为粘土、粉质粘土)时,坡体的水动力表现为动水压力效应。
(2)根据渗透系数的取值范围分别确定了不同类型滑坡的加卸载规律:①对于浮托减重型滑坡,库水位上升期间,稳定性系数下降,边坡的库水位变化为加载效应,库水位下降期间,稳定性系数上升,边坡的库水位变化为卸载效应。②对于浮托减重+动水压力(复合)型滑坡,库水位上升期间,边坡稳定性系数先上升后下降,边坡的库水位变化为先卸载后加载效应;库水位下降期间,边坡稳定性系数先下降后上升,边坡的库水位变化为先加载后卸载效应。③对于动水压力型滑坡,库水位上升期间,稳定性系数上升,边坡的库水位变化为卸载效应;库水位下降期间,稳定性系数下降,边坡的库水位变化为加载效应。
(3)根据坡体降雨入渗导致的抗剪强度参数弱化规律,将坡体的弱化过程大致分为三个阶段:含水率在10%~15%之间为抗剪强度参数快速减小阶段;含水率在15%~25%之间时为抗剪强度参数缓慢减小阶段;含水率在25%至饱和时为抗剪强度参数弱化趋向定值阶段,并依此提出和确定了不同岩土体的抗剪强度随含水率变化的经验公式。此外,根据库水涨落带岩土体抗剪强度参数随干湿循环作用次数的变化规律,发现随着干湿循环作用次数的增加,不同类型岩土体的粘聚力和内摩擦角弱化趋势总体一致表现为逐渐降低。各种类型岩土体粘聚力的弱化幅度总体均明显大于内摩擦角的弱化幅度,且岩土体抗剪强度参数弱化主要集中在干湿循环作用的前期。
(4)根据复合水环境诱发滑坡的形成机制与失稳动因,将水库型滑坡的动力作用因素(降雨、库水)与位移响应规律及其形成机制进行了定量有机耦合研究,提出了以月降雨量增量与月库水位变化量的复合动力作为加卸载动力参数,以相应月位移变化量作为加卸载动力位移响应参数,以此为基础建立了水库型滑坡复合水动力加卸载响应比参数与预测模型,并通过树坪滑坡现场监测数据验证了加卸载响应比参数用于边坡稳定性评价的准确性和可行性。运用该参数不仅可描述引起水库型边坡稳定性演化及其位移变化的动因与机制,而且还可对该类边坡的动态稳定性进行定量监测与评价。
(5)根据“损伤力学”基本原理,运用损伤变量评价参数揭示了极限平衡法稳定性系数与加卸载响应比的内在联系与定量关系,依此建立了水库型堆积层边坡失稳的判据准则,使加卸载响应比参数与边坡稳定性系数具有等效的稳定性评价意义与价值,且与传统极限平衡法稳定性系数相比具有更方便、更实用且可监测的特点。
(6)运用复合水动力加卸载响应比预测模型与稳定性判据准则,完成了水库型典型堆积层滑坡位移场与应力场的加卸载响应比耦合分析与评价,确定了滑坡位移动力耦合参数空间分布特征与演化规律,并运用加卸载响应比变化趋势划定了边坡单元的损伤区域。同时根据坡体各单元的损伤状态,评价了边坡塑性区分布范围、塑性破坏程度以及其空间演化规律。
本文依据水库型滑坡的变形与失稳的动因与机理,将滑坡复合水加卸载动力效应-坡体参数弱化效应-稳定性演化规律视为一个完整滑坡分析系统进行交叉耦合研究。研究了水库型滑坡复合渗流场变化规律,以及复合水加卸载动力效应与弱化效应对边坡稳定性的影响,建立了水库型滑坡复合水动力加卸载响应比预测模型。以此为基础,运用损伤力学的基本原理,建立了水库型堆积层边坡失稳的判据准则。上述研究成果可为水库型堆积层滑坡的预测预报与防治提供理论依据。其主要研究成果如下:
(1)根据三峡水库的调度方案和降雨特点,确定了不同渗透系数、库水变化速率、降雨强度的渗流场工况,并分析了不同工况库水与降雨联合作用下其滑坡坡体浸润线与孔隙水压力变化规律,对不同岩性渗透系数条件的坡体渗流动力变化规律进行了定量评价:1)当k≥100m/d(坡体岩土体岩性为砂砾、砾石)时,坡体的水动力表现为浮托减重(静水压力)效应;2)当1m/d<k<100m/d(坡体岩土体岩性为粉土、细粒土质砂)时,坡体的水动力表现为浮托减重+渗透力(混合)效应;3)当k≤1m/d(坡体岩土体岩性为粘土、粉质粘土)时,坡体的水动力表现为动水压力效应。
(2)根据渗透系数的取值范围分别确定了不同类型滑坡的加卸载规律:①对于浮托减重型滑坡,库水位上升期间,稳定性系数下降,边坡的库水位变化为加载效应,库水位下降期间,稳定性系数上升,边坡的库水位变化为卸载效应。②对于浮托减重+动水压力(复合)型滑坡,库水位上升期间,边坡稳定性系数先上升后下降,边坡的库水位变化为先卸载后加载效应;库水位下降期间,边坡稳定性系数先下降后上升,边坡的库水位变化为先加载后卸载效应。③对于动水压力型滑坡,库水位上升期间,稳定性系数上升,边坡的库水位变化为卸载效应;库水位下降期间,稳定性系数下降,边坡的库水位变化为加载效应。
(3)根据坡体降雨入渗导致的抗剪强度参数弱化规律,将坡体的弱化过程大致分为三个阶段:含水率在10%~15%之间为抗剪强度参数快速减小阶段;含水率在15%~25%之间时为抗剪强度参数缓慢减小阶段;含水率在25%至饱和时为抗剪强度参数弱化趋向定值阶段,并依此提出和确定了不同岩土体的抗剪强度随含水率变化的经验公式。此外,根据库水涨落带岩土体抗剪强度参数随干湿循环作用次数的变化规律,发现随着干湿循环作用次数的增加,不同类型岩土体的粘聚力和内摩擦角弱化趋势总体一致表现为逐渐降低。各种类型岩土体粘聚力的弱化幅度总体均明显大于内摩擦角的弱化幅度,且岩土体抗剪强度参数弱化主要集中在干湿循环作用的前期。
(4)根据复合水环境诱发滑坡的形成机制与失稳动因,将水库型滑坡的动力作用因素(降雨、库水)与位移响应规律及其形成机制进行了定量有机耦合研究,提出了以月降雨量增量与月库水位变化量的复合动力作为加卸载动力参数,以相应月位移变化量作为加卸载动力位移响应参数,以此为基础建立了水库型滑坡复合水动力加卸载响应比参数与预测模型,并通过树坪滑坡现场监测数据验证了加卸载响应比参数用于边坡稳定性评价的准确性和可行性。运用该参数不仅可描述引起水库型边坡稳定性演化及其位移变化的动因与机制,而且还可对该类边坡的动态稳定性进行定量监测与评价。
(5)根据“损伤力学”基本原理,运用损伤变量评价参数揭示了极限平衡法稳定性系数与加卸载响应比的内在联系与定量关系,依此建立了水库型堆积层边坡失稳的判据准则,使加卸载响应比参数与边坡稳定性系数具有等效的稳定性评价意义与价值,且与传统极限平衡法稳定性系数相比具有更方便、更实用且可监测的特点。
(6)运用复合水动力加卸载响应比预测模型与稳定性判据准则,完成了水库型典型堆积层滑坡位移场与应力场的加卸载响应比耦合分析与评价,确定了滑坡位移动力耦合参数空间分布特征与演化规律,并运用加卸载响应比变化趋势划定了边坡单元的损伤区域。同时根据坡体各单元的损伤状态,评价了边坡塑性区分布范围、塑性破坏程度以及其空间演化规律。