论文部分内容阅读
A wear resistant Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of the hardening and tempering C degree steel by PTA (plasma transferred arc) cladding with (wt%) Fe-25Cr-7C elemental powder blends. Microstructure of the coating was characterized by OM, SEM, XRD and EDS. Wear resistance of the coating was tested under dry sliding wear condition at room temperature. The results indicate that the PTA clad ceramal composite coating has a rapidly solidified fine microstructure consisting of Cr7C3 primary particles uniformly distributed in theγ-Fe matrix and is metallurgically bonded to the C degree steel substrate. The PTA clad Cr7C3/γ-Fe ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test conditions. The excellent wear resistance of the Cr7C3/γ-Fe ceramal composite coating is attributed to the coating's high hardness, strong covalent atomic bonding and refined microstructure.
A wear resistant Cr7C3 / γ-Fe ceramal composite coating was fabricated on a substrate of the hardening and tempering C degree steel by PTA (plasma transferred arc) cladding with (wt%) Fe-25Cr-7C elemental powder blends. Microstructure of the coating was characterized by OM, SEM, XRD and EDS. Wear resistance of the coating was tested under dry sliding wear condition at room temperature. The results indicate that the PTA clad ceramal composite coating has a rapidly solidified fine microstructure consisting of Cr7C3 primary particles uniformly distributed in the γ-Fe matrix and is metallurgically bonded to the C degree steel substrate. The PTA clad Cr7C3 / γ-Fe ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test conditions. The excellent wear resistance of the Cr7C3 / γ- Fe ceramal composite coating is attributed to the coating's high hardness, strong covalent atomic bonding and refined microstructure.