论文部分内容阅读
充分挖掘遥感数据信息,改善作物识别环境,一直是农作物遥感监测的重要工作.以往研究表明最佳波段组合、纹理信息和植被指数信息可以在一定程度上提高分类精度,但这些手段是否一定可以提高作物识别的精度,不同分类器对不同特征信息组合的响应是否一致等都是值得探讨的问题,也是目前研究甚少的问题.为此,该文将平均值(Mean)、方差(Variance)、均一性(Homogeneity)、反差(Contrast)、相异性(Dissimilarity)、熵(Entropy)、角二阶矩(Angular Second Moment