温敏印迹硅胶微球对薯蓣皂素的吸附及控制释放

来源 :化工进展 | 被引量 : 0次 | 上传用户:bbc118
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究分子印迹聚合物对特定药物的吸附及控制释放具有重要理论和应用价值.本文以硅胶为载体,先对其进行硅烷化修饰,再以薯蓣皂素为模板分子,以甲基丙烯酸(MAA)和N-异丙基丙烯酰胺(NIPAm)为共同功能单体、乙二醇二甲基丙烯酸酯(EGDMA)为交联剂、偶氮二异丁腈(AIBN)为引发剂,通过表面接枝分子印迹聚合物制备了薯蓣皂素温敏印迹硅胶微球.用傅里叶红外光谱及扫描电镜对聚合物表面化学基团及颗粒形貌进行表征.测试了分子印迹硅胶微球的载药性及在不同环境条件下的药物释放行为.结果表明,温敏印迹硅胶微球对薯蓣皂素具有良好吸附性能,其饱和吸附量为21.6mg/g,也具有较高的控制缓释性能.释放动力学表明,其在12h内控制薯蓣皂素释放率为81.9%,而非印迹硅胶微球不具备缓释性.环境条件对温敏印迹硅胶微球的控制释放具有重要影响.当温度为30℃、溶剂为甲醇、NaCl离子强度为1.5×10-4mol/L时,印迹微球具有最高释放率,达99.28%.
其他文献
相变材料(PCM)具有较高的储能密度,有利于能源的储存和高效利用.对于低温相变材料,其应用从相变温度为0℃至室温的空调和建筑等领域到零下的工业制冷和食品、药物等的运输储藏,非常广泛.本文从水溶液相变材料体系和非水相变材料体系两方面对冷链用相变材料进行了系统介绍,并从过冷、长期稳定性和导热等角度综述了近年关于冷链用相变材料的研究.指出对于水溶液相变材料体系存在的严重过冷及盐-水体系较强的金属腐蚀性,可通过使用合适的成核剂、改善相变材料对成核剂的浸润性、避免纳米粒子团聚及用不锈钢或聚合物材料封装等方法改善;对
多孔g-C3N4基光催化材料由于具有较高的比表面积、丰富的反应活性位点和较短的电子传递路径等特点,能较好地解决块体g-C3N4基材料存在的比表面积小、光生载流子复合快及可见光利用效率低等问题,因而具有广阔的发展前景和应用潜力.本文主要从以下方面进行综述:多孔g-C3N4基光催化材料常用的制备方法,包括硬模板法、软模板法、水热合成法、热聚合法、超分子自组装法;多孔g-C3N4基材料在光催化领域的应用,包括光解水制氢、光催化降解有机污染物、光催化去除氮氧化物和光催化还原CO2等;最后指出了当前影响多孔g-C3
重金属污染是目前全世界面临的一个重大挑战,传统治理方法成本高、效率低等缺陷已不符合当今社会可持续发展战略.纤维素纳米纤维(cellulose nanofiber,CNF)因可再生、活性高、比表面积大和密度低等优点,在重金属吸附领域显示出巨大的应用潜力.本文主要综述了CNF的化学改性方法及其改性产物在水体系重金属离子吸附中的应用进展.首先对CNF的改性进行了系统的综述,主要包括化学接枝改性(羧基化、氨基化、巯基化、磷酸基化、磺酸基化和醛基化和硅烷化等)与接枝共聚改性.其次从结构设计方面重点阐述了改性CNF以
以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为混合硅源,不同配比条件下采用气溶胶辅助自组装技术制备高比表面积的中空介孔二氧化硅纳米颗粒(HMSNs),并应用于原花青素(PC)的负载,以期提高其生物利用度.利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外图谱(FTIR)和粒径分析(DLS)等对载体颗粒的形成过程、结构特性以及负载性能进行探究,基于BET分析方法计算HMSNs的比表面积,并对孔径分布进行分析.结果表明,前体溶液水解的活性中间体缩合形成二氧化硅网络结构,同时雾化后
可穿戴和便携式电子设备迫切需要发展透明超级电容器等电化学储能器件.炭化树叶叶脉由连续的碳纤维网络构成,具有非常好的透明性,且兼具导电性好和质量轻的优点.本文以炭化菩提树叶叶脉网络为集流体,通过溶剂热法在其上原位生长了Ni/Co混合金属-有机框架材料(Ni/Co-MOF).炭化叶脉的连续碳纤维网络有利于电子连续传输及电解液的输运;Ni/Co-MOF中混合金属中心有利于提供更多的电化学位点存储电荷.所制备的炭化叶脉网络@Ni/Co-MOF透明电极在1mA/cm2电流密度下表现出1.15F/cm2的高面积容量,
H2是一种清洁、绿色的燃料和能源载体.目前工业上应用较为成熟的生产工艺是重整反应制氢.其中,Ni基重整催化剂由于其高储量、高活性和低成本的优点而受到研究人员的广泛关注,但在反应过程中存在易因烧结、积炭和中毒等原因而失活的问题.因此,如何提高Ni基重整催化剂的反应稳定性是一个急需解决的问题.本文介绍了上述三种引起Ni基重整催化剂失活的主要原因,并从调控金属Ni粒子粒径、增强金属-载体相互作用、形成晶格氧或表面氧物种以及Ni粒子纳米结构调控四个方面阐述了近年来在抑制失活并提高Ni基重整催化剂反应性能和稳定性领
添加传统丁苯胶乳进行改性,大大提高了水泥的力学性能,但是改性后的水泥材料流动性能差,抗压性能损失较多.为了提高添加丁苯胶乳后水泥的流动性及降低抗压性能损失,本文对丁苯胶乳进行改性,以苯乙烯与聚丁二烯作为核层、带有苯环的对苯乙烯磺酸钠作为壳层,制备出核壳型丁苯(SSBR)胶乳.把新合成的SSBR胶乳加入水泥后,对水泥力学性能进行表征,由于SSBR胶乳中与磺酸根相连的是苯环刚性链,空间位阻效应明显,添加8%SSBR胶乳水泥浆的流变指数增大为0.898,分子链强度大,水泥石的7天抗压强度损失量为2.31%,损失
采用原位生长法,在泡沫镍(nickel foam,NF)基底上制备具有三维互连结构的CuGeO3纳米片,直接将CuGeO3/NF电极材料用作锂离子电池电极,省去了涂覆法制备粉末电极所需的高分子黏结剂.利用X射线衍射仪、X射线光电子能谱、扫描电镜和透射电镜分析了电极材料的结构和形貌,测试了CuGeO3/NF和CuGeO3两种负极材料的电化学性能.结果表明,与传统涂覆法制备的CuGeO3粉末电极相比,CuGeO3/NF无黏结剂型电极具有更好的循环性能和倍率性能.在0.2A/g电流密度下500次循环后,可逆比容
半芳香尼龙具有优异的力学强度、耐热性能和耐溶剂性能,在电子电器、汽车、轨道交通、特种装备中具有重要应用,受到了国内外学者和产业界的广泛关注.然而,传统聚合方法存在的制备周期长、分子量分布宽等技术难题长期得不到有效解决.本文利用微波能够使吸波材料快速、均匀升温的特点,首次在微波辅助条件下制备了耐高温半芳香尼龙PA12T,研究了在密闭条件下,以水作为吸波介质,水的用量、反应温度以及反应时间等条件对聚合产物特性黏数的影响,并对产物结构及热性能进行了表征.结果表明,微波辅助聚合与传统聚合方法相比,反应时间缩短三分
石墨烯具备多种优异的性能,但容易通过π-π堆积和范德华力作用产生聚集,重新堆叠成石墨.为了改善石墨烯的堆叠问题,提高石墨烯材料的应用性,越来越多的研究者将石墨烯及其衍生物和磁性纳米粒子复合,制备综合性能更优的新型材料.本文结合近年来国内外研究报道,总结了磁性石墨烯纳米复合材料的制备方法(水热/溶剂热、化学接枝法、微波辅助法等),概述了磁性石墨烯复合材料在环境样品分离富集、催化、涂层耐腐蚀性、吸波材料及能源等方面的应用,指出了目前磁性石墨烯复合材料研究中存在的一些问题,例如磁性颗粒容易发生团聚、生物安全性有