基于BTP/PIP-TMC界面聚合体系制备高通量复合纳滤膜

来源 :膜科学与技术 | 被引量 : 0次 | 上传用户:mimibbs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
选择具有良好亲水性和线性结构特征的1,3-二[三(羟甲基)甲氨基]丙烷(BTP)与哌嗪(PIP)共同组成水相单体,与均苯三甲酰氯(TMC)通过界面聚合合成复合纳滤膜.利用ATR/FTIR、SEM和接触角测定仪等手段对合成的复合纳滤膜进行表征,并考察水相单体中BTP含量对纳滤膜渗透分离性能和亲水性的影响.结果表明,BTP被成功引入到聚酰胺分离层中,随着水相单体中BTP含量的提高,聚酰胺分离层厚度和水通量都有所增加,但对无机盐的截留性能下降.最佳的水相组成为:PIP质量分数为0.4%,BTP质量分数为0.6%,此时复合纳滤膜的纯水渗透系数为105 L/(m2·h·MPa),达到原膜的1.54倍,对Na2SO4、MgSO4、MgCl2和 NaCl 的截留率分别为97.3%、91.4%、40.7%和31.7%.
其他文献
针对目前煤矿综采工作面远程监测监控系统存在信息孤岛、不利于煤矿智能管控的问题,提出了煤矿综采工作面高效服务云管控平台和多个煤矿综采高效服务云平台的设计思路.综采工作面高效服务云管控平台主要包括智能服务云平台系统、专家智能决策管控系统、设备工况数据交互系统、台账仓储交互系统、大数据决策平台管控系统、设备故障诊断数据交互系统、人员管理交互系统和安全监测监控系统等.在煤矿开展了试验验证,结果表明:该平台在PC端或手机移动终端实现了对综采工作面设备的实时监测、多个综采工作面人员高效协同管理和基于大数据的分析决策等
矿用光纤陀螺(FOG)是煤矿井下姿态仪的核心器件,光纤陀螺的输出对寻北精度有决定性影响.光纤陀螺仪本身存在随机误差,采用Allan方差对其各个噪声系数进行量化.通过小波分解把各层分解信号分离,由噪声系数推导小波阈值作为幅值相近的小波分解信号阈值进行滤波.常用小波去噪方法是采用硬阈值、软阈值去噪,在此基础上构造了一种改进小波阈值算法进行去噪.该算法与硬阈值和软阈值去噪算法相比连续性更好,减少了恒定偏差.采用硬阈值、软阈值和改进阈值的去噪算法对光纤陀螺输出进行对比.结果 表明,改进小波阈值去噪对光纤陀螺的各项
高位钻孔瓦斯抽放是治理采空区瓦斯最常用的技术.常规设计手段通过Excel计算钻孔参数,采用CAD绘制钻孔图形,没有考虑煤层赋存的变化情况,效率低、精度差.针对高位钻孔设计难题,分析了设计要求和约束条件,设计了计算机设计算法和流程,并且借助GIS平台二次开发实现了高位钻孔设计软件.现场试验表明,高位钻孔自动化设计提高了效率,减轻了人员工作量.高位钻孔自动化设计模式为其他钻孔类型的自动设计提供了思路和方法.
目前用于煤矿井下的信息承载网主要是百兆、千兆和万兆矿用以太环网,其时延和可靠性不可控,难以满足煤矿井下少人或无人作业、地面远程控制等需求.服务质量(QoS)可保证最高优先级应用的实时性和可靠性,但当多路接口信号同时汇入且数据量较大,或前1个数据包正在发送时,最高优先级应用的实时性和可靠性也无法保证.针对上述问题,提出了煤矿智能化信息综合承载网技术要求:传输带宽宽、传输时延短、可靠性高、传输距离远、抗干扰能力强、本质安全防爆、电网电压波动适应能力强、抗故障能力强、防护性能好、多业务综合承载等.基于上述要求,
针对目前生产过程中的输送带跑偏故障,设计了多轴线托辊耦合纠偏系统.介绍了其结构组成,对其纠偏机理进行了分析,提出了群控制策略与算法.现场试验与应用结果表明,该系统为输送带提供了更大的纠偏作用力,具有良好的自动纠偏效果,从而很好地解决了复杂工况下输送带的跑偏问题.
含油废水排放引起的生态环境问题日益显著.因此,本文以实际含铜污泥与氧化铁(Fe2O3)混合,采用干/湿纺丝技术结合高温热转化法制备得到尖晶石CuFe2O4中空纤维膜,在实现含油废水高效处理的同时,也对含铜污泥进行高效回收.结果表明,在1 000℃条件下,铜离子稳定在尖晶石相中,制备的CuFe2O4膜具有高的水渗透性[3 200L/(m2·h·MPa)],超亲水-水下超疏油性质(水下油接触角为156°).该膜对水包油(O/W)乳化液的的截留率达99.69%,水渗透率稳定在1 770 L/(m2·h·MPa)
采用“自下而上”策略,成功合成了 2种含薄荷酯的手性共轭微孔聚合物(CCMP).以CCMP为分散相,醋酸纤维素(CA)、乙基纤维素(EC)为基质,采用相转换法,制备了 3种混合基质膜.扫描电子显微镜显示,CCMP在基质中分散均匀.在氨基酸外消旋体的对映体分离时,当分散相CDCMP-1质量分数为4%,混合基质膜对(D,L)-苯丙氨酸的透过率为7.75×10-9 m2/h,对映体过量为60.6%ee,表现出较高的对映体分离性能.
通过电催化膜对大肠杆菌进行灭活处理,采用电子顺磁共振技术检测电催化过程产生的自由基,采用平板计数、电镜观察、双染法和刃天青还原实验等方法评价大肠杆菌的可培养能力、形态结构、细胞膜通透性和新陈代谢能力,探究电催化膜灭活大肠杆菌的机制.研究结果表明,电催化膜在水处理过程中能够产生对灭活大肠杆菌起重要作用的·OH、1O2等氧化活性物质,能破坏大肠杆菌的结构形态、细菌还原酶和新陈代谢能力,使细菌失去活性而灭活;大肠杆菌灭活效果随着电催化膜电流密度的增加而增加,当电流密度增加到75 mA/cm2时,大肠杆菌减少了
基于微观颗粒受力分析,结合“浅池沉淀理论”反向思维,建立了平板膜组件尺寸优化模型.通过计算流体力学(CFD)技术模拟膜组件微观流场,对平板膜组件进行了尺寸优选.并以城市污水典型污染物腐殖酸(HA)、海藻酸钠(SA)、牛血清蛋白(BSA)为研究对象,对膜组件的抗污染性能进行了实验研究.结果表明:当膜组件长宽高比例为40 ∶ 30 ∶ 1时,优化膜组件对HA、SA、BSA的比通量衰减率在2 h内比原组件分别减小了 14%、9.3%、7.9%,且污染膜阻力均小于原组件,采用受力分析优化膜组件可以在流场及污染控制
以二水醋酸锌和氨水为原料,采用化学浴沉积法在平均孔径为250 nm的多孔SiC陶瓷表面构造花状ZnO微纳结构,并用正辛基三乙氧基硅烷接枝改性.考察了 Zn2+浓度、反应温度和反应时间对沉积在多孔陶瓷表面ZnO形貌的影响,进而考察其对多孔陶瓷表面超疏水性能的影响.对比了超疏水改性前后多孔陶瓷的表面性质及其油-固分离性能.结果表明,花状ZnO在多孔SiC陶瓷表面沉积的最佳条件是:Zn2+浓度为75 mmol/L,反应温度为96℃,反应时间为3 h.此时硅烷接枝改性后多孔陶瓷表面超疏水效果最好,其表面水接触角和