论文部分内容阅读
传统的文本检测方法大多采用自下而上的流程,它们通常从低级语义字符或笔画检测开始,然后进行非文本组件过滤、文本行构建和文本行验证。复杂场景中文字的造型、尺度、排版以及周围环境的剧烈变化,导致人的视觉系统是在不同的视觉粒度下完成文本检测任务的,而这些自底向上的传统方法的性能很大程度上依赖于低级特征的检测,难以鲁棒地适应不同粒度下的文本特征。近年来,深度学习方法被应用于文本检测中来保留不同分辨率下的文本特征,但已有的方法在对网络中各层特征提取的过程中没有明确重点特征信息,在各层之间的特征映射中会有信息丢失