论文部分内容阅读
【摘 要】分析了混凝土裂缝产生的原因,阐述了预防裂缝产生的措施,以期为防止混凝土裂缝提供参考。
【关键词】混凝土裂缝;成因;温度应力;预防及补救措施
水泥混凝土是土木工程中使用最广泛、用量最多的一种混合材料,它具有很多优点,但弱点也很明显,如均匀性差、离散性大,容易产生裂缝,影响使用功能和外观。 混凝土温度应力的变化是其中一个原因。在大体积混凝土中温度应力及温度控制具有重要意义。现将施工中混凝土裂缝的成因和处理措施介绍如下。
1. 混凝土产生裂缝的原因
混凝土中产生裂缝有多种原因,主要有温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理、原材料不合格(如碱骨料反应)、模板变形、基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力,后期在降温过程中,由于受到基础或老混凝土的约束,又会在混凝土内部出现拉应力,气温的降低也会在混凝土表面引起很大的拉应力。这时产生的裂缝叫收缩裂缝,裂缝多为规则的条状,很少交叉,常常发生在结构变截面处,于受力钢筋平行。许多混凝土的内部湿度变化很小或较慢,但表面湿度可能变化较大或剧烈。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝,这时裂缝呈龟壳状或散射状,无规律,长度、宽度也不一致,称为龟裂裂缝。混凝土构件超荷载时(施工或营运中),造成变形、失稳或疲劳等原因产生裂缝,一般发生在构件弯矩最大的部位,裂缝沿受力筋垂直方向或斜向发展,这种裂缝称为超载裂缝。因地基不均匀沉降或构件结合不良,剪应力超过设计强度而产生的裂缝叫沉降裂缝,裂缝一般与地面垂直,或呈30“~40”角方向发展。混凝土因拌合或下料不均致使混凝土离析,或因漏振、过振而产生的疏松状态叫疏松裂缝。
2. 混凝土温度应力分析
2.1 根据温度应力的形成过程可分为以下3个阶段:
(1)早期。自浇筑混凝土开始至水泥放热基本结束,一般约30 d。这个阶段水泥放出大量的水化热、混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。
(2)中期。自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期温度应力主要是由于混凝土的冷却及外界气温变化引起的,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。
(3)晚期。混凝土完全冷却以后的运转时期。
2.2 温度应力主要是外界气温变化所引起,这些应力与前2种的残余应力相叠加。根据温度应力引起的原因可分为2类,一类是自生应力。边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。另一类是约束应力。结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。这2种温度应力往往和混凝土的干缩所引起的应力共同作用。要根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响。
3. 混凝土裂缝预防措施
混凝土裂缝应从设计、施工方案选择、施工过程控制及工后养护等多方面考虑。
3.1 减轻温度应力。 为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件方面着手。
(1)控制温度。措施如下:采用改善骨料级配,用干硬性混凝土、掺混合料、加引气剂或塑化剂等措施,以减少混凝土中的水泥用量;拌合混凝土时加水或用水将碎石冷却,以降低混凝土的浇筑温度;热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;在混凝土中埋设水管,通入冷水降温;规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。
(2)改善约束条件。措施如下:合理地分缝、分块;避免基础过大起伏;合理地安排施工工序,避免过大的高差和侧面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
3.2 适时拆模,注重防护。 在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力叠加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海绵等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
3.3 适量加筋。 加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低,只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200 Kg/cm2。因此,在混凝土中要想利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小,而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但其对结构的强度和耐久性仍有一定的影响。 3.4 使用外加剂。 为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,其主要作用:
(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径,可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在20世纪60年代就已被国际上所确认。
(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。
(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。
(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。
(5)提高水泥浆与骨料的粘结力,提高混凝土抗裂性能。
(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效提高混凝土抗拉强度,大幅提高混凝土的抗裂性能。
(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。
(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。
(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。许多外加剂都有缓凝、增加和易性、改善塑性的功能,在工程实践中应多进行这方面的试验,比单纯地靠改善外部条件,会更加简捷、经济。
3.5 混凝土的早期养护。 混凝土早期养护的主要目的在于保持适宜的温湿条件,以达到如下效果:
(1)使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩;实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝;防止混凝土超冷,应该设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度;防止老混凝土过冷,以减少新老混凝土间的约束。
(2)使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。适宜的温湿度条件是相互关联的,混凝土的保温措施常常也有保湿的效果。新浇混凝土中所含水分完全可以满足水泥水化的要求。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利的影响。因此,混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视该时期的养护。
4. 混凝土裂缝常见修补方法
4.1 压力注浆法:利用压送设备(压力0.2~0.4MPa)将补缝液注入混凝土裂缝,达到闭塞的目的,该方法属传统方法,效果较好。
4.2 开槽填补法:沿混凝土裂缝开凿成槽,用聚合物水泥砂浆填补封闭的方法,适用于结构允许开槽而宽度较大但数量不多的裂缝。
4.3 涂膜封闭法:在混凝土表面涂刷防水涂膜以封闭微细裂缝的方法,适用于宽度小于0.2mm的细小裂缝的修补。
参考文献
[1] 《桥梁工程》人民交通出版社.
[2] 《桥梁预应力混凝土技术及设计原理》人民交通出版社.
[文章编号]1006-7619(2012)08-12-808
[作者简介] 刘玉超(1972.1.8-),毕业学校:西安公路学院(现长安大学)。
【关键词】混凝土裂缝;成因;温度应力;预防及补救措施
水泥混凝土是土木工程中使用最广泛、用量最多的一种混合材料,它具有很多优点,但弱点也很明显,如均匀性差、离散性大,容易产生裂缝,影响使用功能和外观。 混凝土温度应力的变化是其中一个原因。在大体积混凝土中温度应力及温度控制具有重要意义。现将施工中混凝土裂缝的成因和处理措施介绍如下。
1. 混凝土产生裂缝的原因
混凝土中产生裂缝有多种原因,主要有温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理、原材料不合格(如碱骨料反应)、模板变形、基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力,后期在降温过程中,由于受到基础或老混凝土的约束,又会在混凝土内部出现拉应力,气温的降低也会在混凝土表面引起很大的拉应力。这时产生的裂缝叫收缩裂缝,裂缝多为规则的条状,很少交叉,常常发生在结构变截面处,于受力钢筋平行。许多混凝土的内部湿度变化很小或较慢,但表面湿度可能变化较大或剧烈。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝,这时裂缝呈龟壳状或散射状,无规律,长度、宽度也不一致,称为龟裂裂缝。混凝土构件超荷载时(施工或营运中),造成变形、失稳或疲劳等原因产生裂缝,一般发生在构件弯矩最大的部位,裂缝沿受力筋垂直方向或斜向发展,这种裂缝称为超载裂缝。因地基不均匀沉降或构件结合不良,剪应力超过设计强度而产生的裂缝叫沉降裂缝,裂缝一般与地面垂直,或呈30“~40”角方向发展。混凝土因拌合或下料不均致使混凝土离析,或因漏振、过振而产生的疏松状态叫疏松裂缝。
2. 混凝土温度应力分析
2.1 根据温度应力的形成过程可分为以下3个阶段:
(1)早期。自浇筑混凝土开始至水泥放热基本结束,一般约30 d。这个阶段水泥放出大量的水化热、混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。
(2)中期。自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期温度应力主要是由于混凝土的冷却及外界气温变化引起的,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。
(3)晚期。混凝土完全冷却以后的运转时期。
2.2 温度应力主要是外界气温变化所引起,这些应力与前2种的残余应力相叠加。根据温度应力引起的原因可分为2类,一类是自生应力。边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。另一类是约束应力。结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。这2种温度应力往往和混凝土的干缩所引起的应力共同作用。要根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响。
3. 混凝土裂缝预防措施
混凝土裂缝应从设计、施工方案选择、施工过程控制及工后养护等多方面考虑。
3.1 减轻温度应力。 为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件方面着手。
(1)控制温度。措施如下:采用改善骨料级配,用干硬性混凝土、掺混合料、加引气剂或塑化剂等措施,以减少混凝土中的水泥用量;拌合混凝土时加水或用水将碎石冷却,以降低混凝土的浇筑温度;热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;在混凝土中埋设水管,通入冷水降温;规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。
(2)改善约束条件。措施如下:合理地分缝、分块;避免基础过大起伏;合理地安排施工工序,避免过大的高差和侧面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
3.2 适时拆模,注重防护。 在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力叠加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海绵等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
3.3 适量加筋。 加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低,只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200 Kg/cm2。因此,在混凝土中要想利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小,而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但其对结构的强度和耐久性仍有一定的影响。 3.4 使用外加剂。 为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,其主要作用:
(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径,可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在20世纪60年代就已被国际上所确认。
(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。
(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。
(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。
(5)提高水泥浆与骨料的粘结力,提高混凝土抗裂性能。
(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效提高混凝土抗拉强度,大幅提高混凝土的抗裂性能。
(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。
(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。
(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。许多外加剂都有缓凝、增加和易性、改善塑性的功能,在工程实践中应多进行这方面的试验,比单纯地靠改善外部条件,会更加简捷、经济。
3.5 混凝土的早期养护。 混凝土早期养护的主要目的在于保持适宜的温湿条件,以达到如下效果:
(1)使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩;实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝;防止混凝土超冷,应该设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度;防止老混凝土过冷,以减少新老混凝土间的约束。
(2)使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。适宜的温湿度条件是相互关联的,混凝土的保温措施常常也有保湿的效果。新浇混凝土中所含水分完全可以满足水泥水化的要求。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利的影响。因此,混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视该时期的养护。
4. 混凝土裂缝常见修补方法
4.1 压力注浆法:利用压送设备(压力0.2~0.4MPa)将补缝液注入混凝土裂缝,达到闭塞的目的,该方法属传统方法,效果较好。
4.2 开槽填补法:沿混凝土裂缝开凿成槽,用聚合物水泥砂浆填补封闭的方法,适用于结构允许开槽而宽度较大但数量不多的裂缝。
4.3 涂膜封闭法:在混凝土表面涂刷防水涂膜以封闭微细裂缝的方法,适用于宽度小于0.2mm的细小裂缝的修补。
参考文献
[1] 《桥梁工程》人民交通出版社.
[2] 《桥梁预应力混凝土技术及设计原理》人民交通出版社.
[文章编号]1006-7619(2012)08-12-808
[作者简介] 刘玉超(1972.1.8-),毕业学校:西安公路学院(现长安大学)。