论文部分内容阅读
本文成功地训练了3种用于预测临界热流密度(CHF)的人工神经网络,其输入参数分别是系统压力、质量流速、平衡含汽量;其输出参数是CHF。通过人工神经网络,分析了压力、流量、热平衡含汽量和进口过冷度对CHF的影响,且成功地将人工神经网络应用于CHF的预测中,预测结果与实验值符合很好。分析结果表明:人工神经网络训练的3种类型中,类型Ⅱ的预测精度最高,可达±10%。