论文部分内容阅读
摘 要:本文针对学生在学习《概率论与数理统计》过程中,遇到概念的理解错误与概念的内涵的理解容易出错的普遍问题进行一些教学方法的探讨,以便使学生更易于学习《概率论与数理统计》。
关键词:概率统计 概念 引入 背景 趣味性
中图分类号:G424 文献标识码:A 文章编号:1674-098X(2011)03(c)-0181-01
引言:概率论与数理统计是高等院校理工类、经管类的重要课程之一也是数学的一个有特色且又十分活跃的分支。一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于地震预测等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科。因此,概率论与数理统计的教学显得非常重要。但是学生在学习掌握这门知识的过程中普遍感到概念难懂,思维难于开展,问题难于入手,方法难于掌握。基于这一现象,在教学中,更新教学方法,注重教学思维,充分体现以人为本的教学理念成为提高教学质量的必然选择。
1 教学中应注重概念的引入和背景的讲解
概率论是研究随机现象的一门学科,随机现象就是不确定的现象这与学生以前所学的确定的值是不一样的。比如许多学生往往不理解什么是随机变量,为什么要引入随机变量,会感觉这些内容很抽象不好理解。那么我们在讲授的过程中就要注重对随机变量概念的引入及背景知识简单明了的介绍。随机变量我们可以举例为某一时段进入商场的人数,某一天的温度或者是保险公司某段时间的索赔额这些都是随机变量。这就像我们把小学学习得小明有2本书,小红有3本书,共有多少书转化2+3的计算一样。在我们引入的这些例子中就是一个个的随机试验,不同的随机试验我们可以用不同的随机变量X来表示。人数,温度,索赔额就是数字或函数就是学生熟悉的。原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。此外若对一切实数集合B,知道P(X∈B),那么随机试验的任一随机事件的概率也就完全确定了,所以我们只须求出随机变量X的分布P(X∈B),就对随机试验进行了全面的刻画。
2 教学中要注意概念的内涵和相互间的联系
许多学生由于对概念的内涵缺乏理解,对概念之间的内涵和相互联系理解得似是而非。因而在解题时常会出现许多共同的一些常规错误。在教学中,教师应当组织一些有典型意义的错误题解,从而学生在对比分析中正确理解概率统计中的概念,掌握正确的解题方法。比如有许多学生认为,随机变量互不相容就肯定独立,独立肯定也是互相容的:不同的随机变量,它们的分布函数一定不同;同分布的随机变量一定相等;两个一维正态变量合在一起就一定是一个一维正态随机变量;若ε与η不相互独立,则与就一定不相互独立等等,学生此时就是对概念缺乏正确而全面的理解。教师应该结合恰当的例子加以说明,比如独立与互不相容的概念内涵比较时,教师就可以举例两个人患感冒的人相距较远与较近时他们之间的关系就比较容易使学生纠正这些错误观念。
3 教学案例要“活”,注重學科实际
在教学中会有许多的概念,因为概率论与数理统计是与实际生活联系紧密的一门课,讲到相关内容时要注意挑选具有趣味性的例题,概率统计来源于实际生活,它本身是一门极具趣味性的科学,有着大量贴近生活,兴趣盎然的实例,但目前大部分教科书都未注意选择这样的例子如果教师照着教科书的例子讲,必然不能引起学生的兴趣;因此,教师必须注意积累,精心挑选要讲的例题,我们挑选的例题基本上都是实际问题,如生活中抓阄问题的合理性,顾客等候服务时间问题,需设多少个服务员能获得最大收益问题,可靠性问题等等.针对我们工科学校的学员,有机械,优选等贴近学生的实际问题。通过这些实例的阅读和讲解,将理论教学与实际案例有机结合起来,缩短了数学理论与实际应用的距离,使学生提高对概率论的兴趣。并且活的案例不仅将理论与实际结合起来,还使学生在课堂上九能接触到大量的时间问题,这对提高学生综合分析和解决实际问题的能力大有帮助。通过活的案例教学,可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率论与数理统计的思想和方法在现实生活中得到更好的应用,发挥其应有的作用。
法国数学家拉普拉斯曾说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”英国的逻辑学家和经济学家杰文斯也曾对概率论大加赞美:“概率论是生活真正的领路人,如果没有对概率的某种估计,那么我们就寸步难行,无所作为。”那么作为教师的我们更应该把把概率论竭尽所能地传授给学生,使学生充分了解概率论的同时并且能够灵活运用于生活中,这才是我们教学的目的。
参考文献
[1] 盛骤,谢式千,潘承毅.概率论与数理统计,浙江大学.
[2] 陈晓龙,施庆生,邓晓卫.概率论与数理统计[M].南京:东南大学出版社,2003.
[4] 李裕奇.概率论与数理统计[M].北京:国防工业出版社,2001.
[5] 吴群英.概率统计课程中采用兴趣与启发式教学,广西高教研究,2001,3.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
关键词:概率统计 概念 引入 背景 趣味性
中图分类号:G424 文献标识码:A 文章编号:1674-098X(2011)03(c)-0181-01
引言:概率论与数理统计是高等院校理工类、经管类的重要课程之一也是数学的一个有特色且又十分活跃的分支。一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于地震预测等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科。因此,概率论与数理统计的教学显得非常重要。但是学生在学习掌握这门知识的过程中普遍感到概念难懂,思维难于开展,问题难于入手,方法难于掌握。基于这一现象,在教学中,更新教学方法,注重教学思维,充分体现以人为本的教学理念成为提高教学质量的必然选择。
1 教学中应注重概念的引入和背景的讲解
概率论是研究随机现象的一门学科,随机现象就是不确定的现象这与学生以前所学的确定的值是不一样的。比如许多学生往往不理解什么是随机变量,为什么要引入随机变量,会感觉这些内容很抽象不好理解。那么我们在讲授的过程中就要注重对随机变量概念的引入及背景知识简单明了的介绍。随机变量我们可以举例为某一时段进入商场的人数,某一天的温度或者是保险公司某段时间的索赔额这些都是随机变量。这就像我们把小学学习得小明有2本书,小红有3本书,共有多少书转化2+3的计算一样。在我们引入的这些例子中就是一个个的随机试验,不同的随机试验我们可以用不同的随机变量X来表示。人数,温度,索赔额就是数字或函数就是学生熟悉的。原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。此外若对一切实数集合B,知道P(X∈B),那么随机试验的任一随机事件的概率也就完全确定了,所以我们只须求出随机变量X的分布P(X∈B),就对随机试验进行了全面的刻画。
2 教学中要注意概念的内涵和相互间的联系
许多学生由于对概念的内涵缺乏理解,对概念之间的内涵和相互联系理解得似是而非。因而在解题时常会出现许多共同的一些常规错误。在教学中,教师应当组织一些有典型意义的错误题解,从而学生在对比分析中正确理解概率统计中的概念,掌握正确的解题方法。比如有许多学生认为,随机变量互不相容就肯定独立,独立肯定也是互相容的:不同的随机变量,它们的分布函数一定不同;同分布的随机变量一定相等;两个一维正态变量合在一起就一定是一个一维正态随机变量;若ε与η不相互独立,则与就一定不相互独立等等,学生此时就是对概念缺乏正确而全面的理解。教师应该结合恰当的例子加以说明,比如独立与互不相容的概念内涵比较时,教师就可以举例两个人患感冒的人相距较远与较近时他们之间的关系就比较容易使学生纠正这些错误观念。
3 教学案例要“活”,注重學科实际
在教学中会有许多的概念,因为概率论与数理统计是与实际生活联系紧密的一门课,讲到相关内容时要注意挑选具有趣味性的例题,概率统计来源于实际生活,它本身是一门极具趣味性的科学,有着大量贴近生活,兴趣盎然的实例,但目前大部分教科书都未注意选择这样的例子如果教师照着教科书的例子讲,必然不能引起学生的兴趣;因此,教师必须注意积累,精心挑选要讲的例题,我们挑选的例题基本上都是实际问题,如生活中抓阄问题的合理性,顾客等候服务时间问题,需设多少个服务员能获得最大收益问题,可靠性问题等等.针对我们工科学校的学员,有机械,优选等贴近学生的实际问题。通过这些实例的阅读和讲解,将理论教学与实际案例有机结合起来,缩短了数学理论与实际应用的距离,使学生提高对概率论的兴趣。并且活的案例不仅将理论与实际结合起来,还使学生在课堂上九能接触到大量的时间问题,这对提高学生综合分析和解决实际问题的能力大有帮助。通过活的案例教学,可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率论与数理统计的思想和方法在现实生活中得到更好的应用,发挥其应有的作用。
法国数学家拉普拉斯曾说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”英国的逻辑学家和经济学家杰文斯也曾对概率论大加赞美:“概率论是生活真正的领路人,如果没有对概率的某种估计,那么我们就寸步难行,无所作为。”那么作为教师的我们更应该把把概率论竭尽所能地传授给学生,使学生充分了解概率论的同时并且能够灵活运用于生活中,这才是我们教学的目的。
参考文献
[1] 盛骤,谢式千,潘承毅.概率论与数理统计,浙江大学.
[2] 陈晓龙,施庆生,邓晓卫.概率论与数理统计[M].南京:东南大学出版社,2003.
[4] 李裕奇.概率论与数理统计[M].北京:国防工业出版社,2001.
[5] 吴群英.概率统计课程中采用兴趣与启发式教学,广西高教研究,2001,3.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文