论文部分内容阅读
本文提出一种形成硅—氧对的模型来解释在硅、SiO_2、以及氧存在下生长的砷化镓中的各种反常现象。假设在镓格点上的硅原子与间隙氧原子形成络合物,它作为受主,其能级是低于导带~0.2和0.4电子伏特。我们假设,当低于850℃退火时,此络合物能离解,其反应是2(Si_(Ga)O_i)~-=(Si_(Ga)O_i)~o+3Si_(Ga)~+3e~-。在温度更高时,此反应能可逆。这样一个络合物的电学及热化学性质能解释诸如退火行为、150~200°K之间产生最大迁移率,硅在P型掺杂硅砷化镓中的格点分布、在从镓溶液中生长砷化镓中硅浓度与n型电导到P型电导变化之关系、在汽相外延生长的砷化镓中绝缘层(Ⅰ)的形成及在砷化镓器件中观察到的某些反常现象等问题。提出了各种试图检验Si_(Ga)O_i络合物模型的各种特殊方法与实验。
This paper presents a model for the formation of a silicon-oxygen pair to account for the various anomalies in gallium arsenide grown in the presence of silicon, SiO 2, and oxygen. Assuming that the silicon atom at the gallium lattice sites forms a complex with the interstitial oxygen atoms, it acts as an acceptor with an energy level lower than the conduction band ~ 0.2 and 0.4 electron volts. We assume that the complex dissociates when annealed below 850 ° C and the reaction is 2 (Si_ (Ga) O_i) ~ = (Si_ (Ga) O_i) ~ o + 3Si_ (Ga) -. The reaction is reversible at higher temperatures. The electrical and thermochemical properties of such a complex can explain, for example, the annealing behavior, the maximum mobility between 150 and 200 ° K, the lattice distribution of silicon in P-type doped silicon gallium arsenide, The relationship between the concentration of silicon in gallium arsenide and the change of n-type conductivity to p-type conductivity is discussed. The formation of insulating layer (I) in vapor-phase epitaxial growth of gallium arsenide and some anomalies observed in gallium arsenide devices And other issues. A variety of special methods and experiments are proposed to test the model of Si_ (Ga) O_i complex.